Team:NRP-UEA-Norwich/Safety

From 2012.igem.org

(Difference between revisions)
(Researcher safety)
(Researcher safety)
Line 12: Line 12:
The university has safety standards which have to be met, which included having  basic safety training before starting wet lab work, as well as reading and signing COSH forms.Therefore, when designing experiments we checked whether the COSH forms signed covered the procedures undertaken.  Within this training we learnt what to do in emergencies, where we could access the safety booklet which is always within the lab, as well as being shown where to dispose of the different chemicals and used equipment. It is also vital that researchers within the university ware PPE, including lab coat, gloves and covered shoes. The team enjoyed their lunch well away from the lab, as well as being careful to wash their hands before eating and leaving.  
The university has safety standards which have to be met, which included having  basic safety training before starting wet lab work, as well as reading and signing COSH forms.Therefore, when designing experiments we checked whether the COSH forms signed covered the procedures undertaken.  Within this training we learnt what to do in emergencies, where we could access the safety booklet which is always within the lab, as well as being shown where to dispose of the different chemicals and used equipment. It is also vital that researchers within the university ware PPE, including lab coat, gloves and covered shoes. The team enjoyed their lunch well away from the lab, as well as being careful to wash their hands before eating and leaving.  
-
The organism used as a chassis, within NRPUEA iGEM teams experiments, was ''E.coli''  ( NEB 5-alpha ''E.coli'' was use to characterize existing bio bricks, as well as BL21 pLysS cells and Alpha select gold ''E.coli''. ''E.coli'' is a well-studied type of bacteria and therefore has a fairly predictable behavior as well understood pathways. This reduces the risks of danger to the team.
+
The organism used as a chassis, within NRPUEA iGEM teams experiments, was ''E.coli''  ( NEB 5-alpha ''E.coli'' was use to characterize existing bio bricks, as well as BL21 pLysS cells and Alpha select gold ''E.coli''. ''E.coli'' is a well-studied type of bacteria and therefore has a fairly predictable behavior as well understood pathways. This reduces the risks of danger to the team. ''E.coli'' is a non-pathogentic bacteria which has been categorised as a biosafty level 1 bacteria. Therefore, all the students were able to use the ''E.coli'' within the university’s second year (category one and two) teaching labs.  
When planning the project and the experiments the team discussed and considered their choices of equipment to use. They considered the equipment’s safety to the researcher, as well as the practicality and quality of results gained. Most of the equipment and procedures used within the team’s iGEM project have been previously used, by the team members during the first two years of our undergraduate degree. However, there were a few procedures such as the nanodrop and fluorometer which had not been used before. Therefore the members of the team who were using these pieces of equipment received training from experienced members of staff, in order to avoid accidents which could damage the researcher or the machine itself.  Finally, there were always more experienced scientists present within the lab, such as our advisors, who the team could ask for advice on how to use equipment correctly.
When planning the project and the experiments the team discussed and considered their choices of equipment to use. They considered the equipment’s safety to the researcher, as well as the practicality and quality of results gained. Most of the equipment and procedures used within the team’s iGEM project have been previously used, by the team members during the first two years of our undergraduate degree. However, there were a few procedures such as the nanodrop and fluorometer which had not been used before. Therefore the members of the team who were using these pieces of equipment received training from experienced members of staff, in order to avoid accidents which could damage the researcher or the machine itself.  Finally, there were always more experienced scientists present within the lab, such as our advisors, who the team could ask for advice on how to use equipment correctly.

Revision as of 14:18, 23 August 2012

Header1NewGreen.png

NRP UEA iGEM 2012

 

Use this page to answer the questions on the safety page.


Contents

Would any of your project ideas raise safety issues in terms of:

When designing the experiments the NRPUEA team would undertake we had to consider not only the safety of the researchers and others within the lab, but also the public and the environment.We had to consider carefully the organisms and chemicals we would be using within lab, how we would handle these safely and then dispose of them after to minimize effect on environment and public.

Researcher safety

The university has safety standards which have to be met, which included having basic safety training before starting wet lab work, as well as reading and signing COSH forms.Therefore, when designing experiments we checked whether the COSH forms signed covered the procedures undertaken. Within this training we learnt what to do in emergencies, where we could access the safety booklet which is always within the lab, as well as being shown where to dispose of the different chemicals and used equipment. It is also vital that researchers within the university ware PPE, including lab coat, gloves and covered shoes. The team enjoyed their lunch well away from the lab, as well as being careful to wash their hands before eating and leaving.

The organism used as a chassis, within NRPUEA iGEM teams experiments, was E.coli ( NEB 5-alpha E.coli was use to characterize existing bio bricks, as well as BL21 pLysS cells and Alpha select gold E.coli. E.coli is a well-studied type of bacteria and therefore has a fairly predictable behavior as well understood pathways. This reduces the risks of danger to the team. E.coli is a non-pathogentic bacteria which has been categorised as a biosafty level 1 bacteria. Therefore, all the students were able to use the E.coli within the university’s second year (category one and two) teaching labs.

When planning the project and the experiments the team discussed and considered their choices of equipment to use. They considered the equipment’s safety to the researcher, as well as the practicality and quality of results gained. Most of the equipment and procedures used within the team’s iGEM project have been previously used, by the team members during the first two years of our undergraduate degree. However, there were a few procedures such as the nanodrop and fluorometer which had not been used before. Therefore the members of the team who were using these pieces of equipment received training from experienced members of staff, in order to avoid accidents which could damage the researcher or the machine itself. Finally, there were always more experienced scientists present within the lab, such as our advisors, who the team could ask for advice on how to use equipment correctly.

public safety

environmental safety

Do any of the new BioBrick parts (or devices) that you made this year raise any safety issues? If yes,

did you document these issues in the Registry? how did you manage to handle the safety issue? How could other teams learn from your experience?


Is there a local biosafety group, committee, or review board at your institution?

If yes, what does your local biosafety group think about your project? If no, which specific biosafety rules or guidelines do you have to consider in your country?


Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices and systems be made even safer through biosafety engineering?