Team:Chalmers-Gothenburg/Modelling
From 2012.igem.org
m |
|||
Line 57: | Line 57: | ||
<div align="justify" style="width:auto; margin-left:0px; margin-right:300px;"> | <div align="justify" style="width:auto; margin-left:0px; margin-right:300px;"> | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
- | == | + | ==’’’Modelling’’’=== |
- | + | Mathematical models are increasingly used to study certain aspects of signal transduction pathways, i.e. robustness against concentration variations[[#BaGo[1]]], threshold properties and bistability[[#Lev[2]]] etc. | |
+ | |||
+ | In an attempt to illustrate and understand the dynamics of our modified <em>Saccharomyces cerevisiae</em> (yeast) we created a complete mathematical model for the sequence of events when the hCG hormone binds to our modified receptor in the yeast (LH/CG receptor) and in the end starts an indigo production ([https://2012.igem.org/Team:Chalmers-Gothenburg/Biodetection_of_hCG click here for more information]). Our model is based on the yeast pheromone pathway ([https://2012.igem.org/Team:Chalmers-Gothenburg/Theory#Yeast_pheromone_pathway click here for more information])[[#yeastPathway|[3]]]. | ||
+ | |||
+ | The aim or goal of the model was to use it to analyze and understand where possible problems would occur in the lab and also to make some predictions, eg. estimates of how large concentrations of hCG is needed to, at least in theory, give an output signal, that is for indigo to be produced. | ||
+ | |||
+ | For molecules to enter yeast they must pass through a cell wall with limited permeability. Since hCG is a relatively large molecule and recent studies claim that it is too big to pass through the cell wall we also modeled the diffusion of hCG through the yeast cell wall. This to get some estimates if it is at all possible for the hCG to pass through to the receptor on the cell membrane with the cell wall intact or if it is necessary to delete the cell wall or at least increase its permeability. | ||
+ | |||
+ | ===Modeling the pathway of hCG in the modified yeast=== | ||
+ | For a biochemical reaction system it is common practice to use a set of ordinary differential equations (ODE’s) to describe the changes in the concentration of a biochemical species. In a system of <em>m</em> biochemical species with concentration <em>ci (i=1,…,m)</em> and <em>k</em> biochemical reactions with rates <em>vj (j=1,…,k)</em> you can write: | ||
+ | |||
<!--[[File:Ste12active2.gif]] | <!--[[File:Ste12active2.gif]] | ||
[[File:Ste12active_different_parameters.gif]]--> | [[File:Ste12active_different_parameters.gif]]--> |
Revision as of 14:01, 9 August 2012
’’’Modelling’’’=
Mathematical models are increasingly used to study certain aspects of signal transduction pathways, i.e. robustness against concentration variations[[#BaGo[1]]], threshold properties and bistability[[#Lev[2]]] etc.
In an attempt to illustrate and understand the dynamics of our modified Saccharomyces cerevisiae (yeast) we created a complete mathematical model for the sequence of events when the hCG hormone binds to our modified receptor in the yeast (LH/CG receptor) and in the end starts an indigo production (click here for more information). Our model is based on the yeast pheromone pathway (click here for more information)[3].
The aim or goal of the model was to use it to analyze and understand where possible problems would occur in the lab and also to make some predictions, eg. estimates of how large concentrations of hCG is needed to, at least in theory, give an output signal, that is for indigo to be produced.
For molecules to enter yeast they must pass through a cell wall with limited permeability. Since hCG is a relatively large molecule and recent studies claim that it is too big to pass through the cell wall we also modeled the diffusion of hCG through the yeast cell wall. This to get some estimates if it is at all possible for the hCG to pass through to the receptor on the cell membrane with the cell wall intact or if it is necessary to delete the cell wall or at least increase its permeability.
Modeling the pathway of hCG in the modified yeast
For a biochemical reaction system it is common practice to use a set of ordinary differential equations (ODE’s) to describe the changes in the concentration of a biochemical species. In a system of m biochemical species with concentration ci (i=1,…,m) and k biochemical reactions with rates vj (j=1,…,k) you can write: