Team:MIT/Motivation
From 2012.igem.org
(Difference between revisions)
Line 83: | Line 83: | ||
<center><img src="https://static.igem.org/mediawiki/2012/e/ef/MIT_Strand_Displacement_Cartoon.png" height=150/></center> | <center><img src="https://static.igem.org/mediawiki/2012/e/ef/MIT_Strand_Displacement_Cartoon.png" height=150/></center> | ||
- | A <b>gate strand</b> and <b>output strand</b> exist as a complex that is <b>partially bound</b> through complementary Watson-Crick base-pairing within the S2 binding domain. The gate strand also contains an <b>open, unbound domain</b> called a <b>toehold</b> region, T*. An input strand with a free complementary toehold region, T, can bind to the toehold region on the gate strand, and subsequently displace the output strand to yield an input-gate complex. This is called a <b>toehold-mediated strand displacement</b> reaction. The output strand is used as an input for a downstream gate-output complex. | + | A <b>gate strand</b> and <b>output strand</b> exist as a complex that is <b>partially bound</b> through complementary Watson-Crick base-pairing within the S2 binding domain. The gate strand also contains an <b>open, unbound domain</b> called a <b>toehold</b> region, T*. An input strand with a free complementary toehold region, T, can bind to the toehold region on the gate strand, and subsequently displace the output strand to yield an input-gate complex. This is called a <b>toehold-mediated strand displacement</b> reaction. The output strand is used as an input for a downstream gate-output complex,enabling sophisticated interactions which yield full logic circuits. |
<h3>Background</h3> | <h3>Background</h3> |
Revision as of 02:42, 27 October 2012
Background and Motivation
In the near future, biological circuits will be much more modular and sophisticated than they are now, with a ten-fold smaller nucleotide footprint.
The Enabling Technology: Toehold-Mediated Strand Displacement
Background
Qian and Winfree (Science 2011) utilized DNA computation to create AND and OR logic gates in vitro. They constructed a sophisticated binary square root circuit using these gates:Motivation for Bringing Strand Displacement to Mammalian Synthetic Biology
- More sophisticated circuits with smaller nucleotide footprint A traditional NOT gate is ~1000 bp, whereas our strand displacement NOT gate is ~100 bp.
- Simple combinatorial design space With 4 nucleotides, we can create a nearly infinite number of orthogonal sequences leading to orthogonal parts.
- Ease of composition The input motif matches the output motif allowing for modular cascading reactions.
- Tunability We can set arbitrary digital signal thresholds by varying the concentration of circuit species. We can also achieve signal amplification by including a fuel molecule.