Team:Technion

From 2012.igem.org

(Difference between revisions)
(The reporter system standard)
 
(10 intermediate revisions not shown)
Line 1: Line 1:
{{:Team:Technion/Template:Navigation}}
{{:Team:Technion/Template:Navigation}}
 +
==Our project, in short==
==Our project, in short==
-
[[File:phage.jpg|thumb|border| right|top|200x200px|[https://2012.igem.org/Team:Technion/Project/Description Read more about our project]]]Viruses can be described as complex 3D structures capable of efficient infection of their target organism. Because of their highly specific infection ability, they can be used as vessels for "smart" therapeutic strategies which rely on an agent that can effectively analyze the cellular environment and compute an appropriate response. To demonstrate the potential of a "smart" strategy, we are developing a "Trojan Horse" type of approach based on bactriophage-lambda.<br>
+
[[File:phage.jpg|thumb|border| right|text-bottom|300px|[https://2012.igem.org/Team:Technion/Project/Description <font size="4">Read more about our project</font>]]]Viruses can be described as complex 3D structures capable of efficient infection of their target organism. Because of their highly specific infection ability, they can be used as vessels for "smart" therapeutic strategies which rely on an agent that can effectively analyze the cellular environment and compute an appropriate response. To demonstrate the potential of a "smart" strategy, we are developing a "Trojan Horse" type of approach based on bactriophage-lambda.<br>
Our project uses phage lambda and its target organism, E.coli, as a proof of concept for creating a system with predefined actions that demonstrates the described strategy. The design is based on a high specificity system which combines several different cell elements that will function as a type of logic AND gate. The phage will not harm the bacteria unless three independent conditions are met, activating the phage's lytic cycle and resulting in the bacteria's death; imitating a "Trojan Horse".<br>
Our project uses phage lambda and its target organism, E.coli, as a proof of concept for creating a system with predefined actions that demonstrates the described strategy. The design is based on a high specificity system which combines several different cell elements that will function as a type of logic AND gate. The phage will not harm the bacteria unless three independent conditions are met, activating the phage's lytic cycle and resulting in the bacteria's death; imitating a "Trojan Horse".<br>
Read more about our project on the [https://2012.igem.org/Team:Technion/Project/Description project description] and [https://2012.igem.org/Team:Technion/Project/Overview project overview] pages.
Read more about our project on the [https://2012.igem.org/Team:Technion/Project/Description project description] and [https://2012.igem.org/Team:Technion/Project/Overview project overview] pages.
Line 7: Line 8:
==The reporter system standard==
==The reporter system standard==
One of our main achievements was a reporter system standard. This standard was used to measure the expression of phage RNA polymerases (such as T7 RNA polymerase), which were an intermediate product in our system. The reporter system is composed of phage promoters followed by one of two reporter genes: alkaline phosphatase and <em>xylE</em>. These reporters expand the variety of reporter proteins beyond the commonly used fluorescent proteins, <em>lacZ</em> and luciferase. Read more about this standard [https://2012.igem.org/Team:Technion/Project/Reporter here].
One of our main achievements was a reporter system standard. This standard was used to measure the expression of phage RNA polymerases (such as T7 RNA polymerase), which were an intermediate product in our system. The reporter system is composed of phage promoters followed by one of two reporter genes: alkaline phosphatase and <em>xylE</em>. These reporters expand the variety of reporter proteins beyond the commonly used fluorescent proteins, <em>lacZ</em> and luciferase. Read more about this standard [https://2012.igem.org/Team:Technion/Project/Reporter here].
 +
 +
 +
[[File:Technion Team.JPG|thumb|400px|left|top|[https://2012.igem.org/Team:Technion/Team <font size="4">Our team</font>]]]
==The pioneers==
==The pioneers==
-
We are the first iGEM team from Israel and we are proud to represent the Technion in the competition. Make sure you read about our [https://2012.igem.org/Team:Technion/Team#Mentors_and_Advisers advisors], check our the [https://2012.igem.org/Team:Technion/Team#Our_Team_-_The_looks_and_the_brains team members] and read about [https://2012.igem.org/Team:Technion/Team#Where_we.27re_from where we are from].
+
We are the first iGEM team from Israel and we are proud to represent the Technion in the competition. Make sure you read about our [https://2012.igem.org/Team:Technion/Team#Mentors_and_Advisers advisors], check out the [https://2012.igem.org/Team:Technion/Team#Our_Team_-_The_looks_and_the_brains team members] and read about [https://2012.igem.org/Team:Technion/Team#Where_we.27re_from where we are from].
==Human practice==
==Human practice==
As the pioneers of iGEM in Israel, we felt the need to reach out to the community. A few of us gave a lecture to senior year high school students from biology class. Read about the experience and check out the pictures [https://2012.igem.org/Team:Technion/Human_Practices/High_School_Lecture here].
As the pioneers of iGEM in Israel, we felt the need to reach out to the community. A few of us gave a lecture to senior year high school students from biology class. Read about the experience and check out the pictures [https://2012.igem.org/Team:Technion/Human_Practices/High_School_Lecture here].
-
[[File:TechnionBanner.jpg|frameless|]]
+
 
 +
 
 +
 
 +
 
 +
 
 +
[[File:TechnionBanner1.jpg|thumb|600px|center|]]

Latest revision as of 18:59, 18 October 2012



Contents

Our project, in short

Viruses can be described as complex 3D structures capable of efficient infection of their target organism. Because of their highly specific infection ability, they can be used as vessels for "smart" therapeutic strategies which rely on an agent that can effectively analyze the cellular environment and compute an appropriate response. To demonstrate the potential of a "smart" strategy, we are developing a "Trojan Horse" type of approach based on bactriophage-lambda.

Our project uses phage lambda and its target organism, E.coli, as a proof of concept for creating a system with predefined actions that demonstrates the described strategy. The design is based on a high specificity system which combines several different cell elements that will function as a type of logic AND gate. The phage will not harm the bacteria unless three independent conditions are met, activating the phage's lytic cycle and resulting in the bacteria's death; imitating a "Trojan Horse".
Read more about our project on the project description and project overview pages.

The reporter system standard

One of our main achievements was a reporter system standard. This standard was used to measure the expression of phage RNA polymerases (such as T7 RNA polymerase), which were an intermediate product in our system. The reporter system is composed of phage promoters followed by one of two reporter genes: alkaline phosphatase and xylE. These reporters expand the variety of reporter proteins beyond the commonly used fluorescent proteins, lacZ and luciferase. Read more about this standard here.


The pioneers

We are the first iGEM team from Israel and we are proud to represent the Technion in the competition. Make sure you read about our advisors, check out the team members and read about where we are from.

Human practice

As the pioneers of iGEM in Israel, we felt the need to reach out to the community. A few of us gave a lecture to senior year high school students from biology class. Read about the experience and check out the pictures here.




TechnionBanner1.jpg