Team:Penn State/Codon Optimization Results
From 2012.igem.org
Line 428: | Line 428: | ||
<p>A 6-repeated sequence of a single threonine codon was successfully ligated into the initial construct. The resulting fluorescence was measured using a TECAN machine. The results are displayed graphically below.</p> | <p>A 6-repeated sequence of a single threonine codon was successfully ligated into the initial construct. The resulting fluorescence was measured using a TECAN machine. The results are displayed graphically below.</p> | ||
<br/> | <br/> | ||
+ | <P><a href="https://static.igem.org/mediawiki/2012/1/1e/PennState_MSC_Data_1.jpg"><img src="https://static.igem.org/mediawiki/2012/1/1e/PennState_MSC_Data_1.jpg" width="400"></a></p> | ||
<h3>Additional Testing</h3> | <h3>Additional Testing</h3> |
Revision as of 03:28, 4 October 2012
Codon Optimization
The genetic code is a degenerate one; there are more 3-part combinations of nucleotides than there are amino acids. The topic of codon optimization-that is, the cell's preference for one codon sequence over another in translation-has been heavily researched in an effort to determine the optimal genetic sequences for an organism. This project looks at the effects of repeated amino acid sequences of varying lengths and codons and their effect on the cell.
Codon Optimization
Data Collection
A 6-repeated sequence of a single threonine codon was successfully ligated into the initial construct. The resulting fluorescence was measured using a TECAN machine. The results are displayed graphically below.
Additional Testing
Several more repeated sequences of identical and non-identical single amino acid codons are intended for testing in this construct. To view the completed and prospective sequences, please visit our Parts page