Team:Alberta
From 2012.igem.org
(Difference between revisions)
Rick24568509 (Talk | contribs) |
Rick24568509 (Talk | contribs) |
||
(9 intermediate revisions not shown) | |||
Line 2: | Line 2: | ||
<html> | <html> | ||
<div class="roundBox"> | <div class="roundBox"> | ||
- | <font size= | + | <font size=5> |
- | Towards a Microbial | + | Towards a Microbial Colour Wheel: Spatial Control of Gene Expression |
</font> | </font> | ||
</div> | </div> | ||
Line 23: | Line 23: | ||
</html> | </html> | ||
<br> | <br> | ||
- | |||
<font size=2> | <font size=2> | ||
What can we do with synthetic biology, and how easily can we do it? We picked a straightforward test: making and combining gradients of color to create patterns such as a rainbow and a color wheel. Doing this would require gaining control over several color outputs in a smoothly varying manner, and being able to pattern the inputs to create the pattern desired. Achieving this would demonstrate a degree of fine control over engineered organisms. | What can we do with synthetic biology, and how easily can we do it? We picked a straightforward test: making and combining gradients of color to create patterns such as a rainbow and a color wheel. Doing this would require gaining control over several color outputs in a smoothly varying manner, and being able to pattern the inputs to create the pattern desired. Achieving this would demonstrate a degree of fine control over engineered organisms. | ||
</font> | </font> | ||
+ | <br> | ||
+ | <br> | ||
<html> | <html> | ||
Line 36: | Line 37: | ||
</html> | </html> | ||
<br> | <br> | ||
- | |||
<font size=2> | <font size=2> | ||
- | We used and improved the great colors from Uppsala 2011 as outputs. We first tried putting them under IPTG control, which was successful, but the dynamic range was disappointing. Next we developed and tested a means of controlling copy number, which allowed us to both increase the dynamic range of control, and also create a permanently settable switch through plasmid loss. (Incidentally, this could make a great safety switch for environmental release.) Finally, we designed a system that would use these parts to create a rainbow of color, although we didn’t have time to finish putting the pieces together. | + | We used and improved the great colors from Uppsala 2011 as outputs. We first tried putting them under IPTG control, which was successful, but the dynamic range was disappointing. Next, we developed and tested a means of controlling copy number, which allowed us to both increase the dynamic range of control, and also create a permanently settable switch through plasmid loss. (Incidentally, this could make a great safety switch for environmental release.) Finally, we designed a system that would use these parts to create a rainbow of color, although we didn’t have time to finish putting the pieces together. |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</font> | </font> | ||
<br> | <br> | ||
Line 95: | Line 76: | ||
</div> | </div> | ||
</html> | </html> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
<br> | <br> |
Latest revision as of 03:01, 4 October 2012
|
Towards a Microbial Colour Wheel: Spatial Control of Gene Expression
Concept
What can we do with synthetic biology, and how easily can we do it? We picked a straightforward test: making and combining gradients of color to create patterns such as a rainbow and a color wheel. Doing this would require gaining control over several color outputs in a smoothly varying manner, and being able to pattern the inputs to create the pattern desired. Achieving this would demonstrate a degree of fine control over engineered organisms.
Approach
We used and improved the great colors from Uppsala 2011 as outputs. We first tried putting them under IPTG control, which was successful, but the dynamic range was disappointing. Next, we developed and tested a means of controlling copy number, which allowed us to both increase the dynamic range of control, and also create a permanently settable switch through plasmid loss. (Incidentally, this could make a great safety switch for environmental release.) Finally, we designed a system that would use these parts to create a rainbow of color, although we didn’t have time to finish putting the pieces together.
2012 Sponsors