Team:UCSF/Split Pathway
From 2012.igem.org
Line 31: | Line 31: | ||
<img align="center" style="margin-bottom:0px; width: 500px; margin-top:50px; padding:2; margin-left:100px;" src="https://dl.dropbox.com/u/24404809/iGEM%202012/igem%202012%20website%20photos/Background/Violacein%20Diagram1.jpg"> | <img align="center" style="margin-bottom:0px; width: 500px; margin-top:50px; padding:2; margin-left:100px;" src="https://dl.dropbox.com/u/24404809/iGEM%202012/igem%202012%20website%20photos/Background/Violacein%20Diagram1.jpg"> | ||
<p> <br> | <p> <br> | ||
+ | |||
+ | <regulartext> Other iGEM teams have produced violacein or the green intermediate in the pathway by putting the whole pathway on one plasmid in one cell. We have split the pathway by placing half the pathway on a plasmid in one strain and the other half in a second strain. The intermediate is protodeoxyviolaceinic acid, or PVA. Our results have shown that PVA readily diffuses through both cell membranes. |
Revision as of 05:53, 2 October 2012
One such pathway is the violacein pathway, involving the five enzymes VioA-E. This particular pathway was chosen for our project due to the fact that violacein is a pigment and easily detected.
Violacein is produced in nature by Chromobacterium violaceum and is used commercially as dye, and also has anti-viral and anti-cancer properties. So while we use this for the sake of a model system, violacein production itself has its own merits.
Splitting the Violacein Pathway