Team:XMU-China/modeling

From 2012.igem.org

(Difference between revisions)
 
(10 intermediate revisions not shown)
Line 1: Line 1:
-
{{Team:XMU-China/css}}
+
{{:Team:XMU-China/css}}
-
{{Team:XMU-China/hidden}}
+
{{:Team:XMU-China/hidden}}
-
{{Team:XMU-China/titlebar}}
+
{{:Team:XMU-China/titlebar}}
-
{{Team:XMU-China/modelindex}}
+
{{:Team:XMU-China/modelindex}}
<html xmlns="http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<head>
Line 15: Line 15:
<p class="tit">Modeling</p>
<p class="tit">Modeling</p>
<p><strong class="subtitle"><a name="_Toc01"></a>1. Introduction</strong><br>
<p><strong class="subtitle"><a name="_Toc01"></a>1. Introduction</strong><br>
-
Ordinary differential equation(s) (ODE) is one of the most popular methods in modeling. Frank R. Giordano and other scientists have introduced it exhaustively. <sup>[1]</sup> In many computational biological researching, researchers often use it to simulate the dynamics part of biological process. The concentrations of RNA, proteins, and other molecules are represented by time-dependent variables. <sup>[2]</sup> We used the same method to construct our model.</p><hr>
+
Ordinary differential equation(s) (ODE) is one of the most popular methods in modeling. Frank R. Giordano and other scientists have introduced it exhaustively. <sup><a href="#_ENREF_1" title="Ron Weiss, 2003 #2">[1]</a></sup> In many computational biological researching, researchers often use it to simulate the dynamics part of biological process. The concentrations of RNA, proteins, and other molecules are represented by time-dependent variables. <sup><a href="#_ENREF_2" title="Ron Weiss, 2003 #2">[2]</a></sup> We used the same method to construct our model.</p><hr><br>
<p><strong class="subtitle"><a name="_Toc02" id="Toc02"></a>2. Modeling</strong><br>
<p><strong class="subtitle"><a name="_Toc02" id="Toc02"></a>2. Modeling</strong><br>
First of all, there are 4 variables and 4 parameters in this experience. Their names and meanings are listed below.<table width="740" border="0" align="center" id="commun">
First of all, there are 4 variables and 4 parameters in this experience. Their names and meanings are listed below.<table width="740" border="0" align="center" id="commun">
Line 23: Line 23:
   </tr>
   </tr>
</table><br>
</table><br>
-
<img src="https://static.igem.org/mediawiki/2012/9/9a/XmumodelPcirlt.jpg"><br>
+
<img src="https://static.igem.org/mediawiki/2012/4/43/XmumodelPcirlt2.jpg" width="360"><br>
Those functions about describing the rate equations of biochemical reactions in the circuit P<sub>cI</sub>GLT are:<br>
Those functions about describing the rate equations of biochemical reactions in the circuit P<sub>cI</sub>GLT are:<br>
-
<img width="550" src="https://static.igem.org/mediawiki/2012/2/2f/XMUmodel5.jpg"><br>
+
<img width="450" src="https://static.igem.org/mediawiki/2012/2/2f/XMUmodel5.jpg"><br>
The initial condition is<br>
The initial condition is<br>
-
<img src="https://static.igem.org/mediawiki/2012/7/74/XMUmodel6.jpg" width="180"><br>
+
<img src="https://static.igem.org/mediawiki/2012/7/74/XMUmodel6.jpg" width="130"><br>
-
Equation (1) represents the course of growth of <i>E.coli.</i><sup>[3]</sup> Equation (2) represents the course of producing and decomposing GFP. OD<sub>0</sub> and flu<sub>0</sub> is value of OD and flu when t=0.
+
Equation (1) represents the course of growth of <i>E.coli.</i><sup><a href="#_ENREF_3" title="Ron Weiss, 2003 #2">[3]</a></sup> Equation (2) represents the course of producing and decomposing GFP. OD<sub>0</sub> and flu<sub>0</sub> is value of OD and flu when t=0.
Then, we changed the parameters and figured out the best value for fitting the data of fluorescence intensity.<br>
Then, we changed the parameters and figured out the best value for fitting the data of fluorescence intensity.<br>
Line 43: Line 43:
<br>
<br>
-
<img src="https://static.igem.org/mediawiki/2012/7/74/XmumodelPbadrlt.jpg"><br>
+
<img src="https://static.igem.org/mediawiki/2012/d/d3/XmumodelPbadrlt2.jpg" width="360"><br>
Those functions about describing the rate equations of biochemical reactions in the circuit P<sub>cI</sub>GLT are:<br>
Those functions about describing the rate equations of biochemical reactions in the circuit P<sub>cI</sub>GLT are:<br>
-
<img width="550" src="https://static.igem.org/mediawiki/2012/b/b7/XMUmodel11.jpg"><br>
+
<img width="450" src="https://static.igem.org/mediawiki/2012/b/b7/XMUmodel11.jpg"><br>
The initial condition is<br>
The initial condition is<br>
-
<img width="180" src="https://static.igem.org/mediawiki/2012/6/68/XMUmodel12.jpg"><br>
+
<img width="130" src="https://static.igem.org/mediawiki/2012/6/68/XMUmodel12.jpg"><br>
-
Equation (3) represents the course of growth of E.coli. Equation (4) represents the course of producing and decomposing GFP. Equation (5) represents the arabinose utilized for inducing. OD<sub>0</sub>, flu<sub>0</sub> and Arc0 is value of OD, flu and Arc when t=0.
+
Equation (3) represents the course of growth of <i>E.coli.</i>. Equation (4) represents the course of producing and decomposing GFP. Equation (5) represents the arabinose utilized for inducing. OD<sub>0</sub>, flu<sub>0</sub> and Arc0 is value of OD, flu and Arc when t=0.
After that, we changed the parameters and then found out the value fitting the data of fluorescence intensity most.
After that, we changed the parameters and then found out the value fitting the data of fluorescence intensity most.
<br>
<br>
Line 64: Line 64:
   <tr><td><img src="https://static.igem.org/mediawiki/2012/6/6f/XMUmodel8.jpg" width="400" align="middle" ></td></tr>
   <tr><td><img src="https://static.igem.org/mediawiki/2012/6/6f/XMUmodel8.jpg" width="400" align="middle" ></td></tr>
   <tr>
   <tr>
 +
     <td width="450"><img src="https://static.igem.org/mediawiki/2012/a/a2/Xmumodel9_.jpg" width="450"  align="middle" ></td>
     <td width="450"><img src="https://static.igem.org/mediawiki/2012/a/a2/Xmumodel9_.jpg" width="450"  align="middle" ></td>
   </tr>
   </tr>
-
   <tr><td><b>Figure 2:</b> Fitting line and data of fluorescence intensity (Value Arc=0.1).</td></tr>
+
   <tr>
 +
    <td><b>Figure 3:</b> Fitting line and data of fluorescence intensity (Value Arc=0.1).</td></tr>
</table>
</table>
-
</p><hr>
+
</p><hr><br>
<p><strong class="subtitle"><a name="_Toc03" id="Toc03"></a>3. Result</strong><br>
<p><strong class="subtitle"><a name="_Toc03" id="Toc03"></a>3. Result</strong><br>
-
According to Figure (1-3), we can draw a conclusion that the model we constructed can simulate the process of dynamic change in fluorescence intensity. We can figure out how those parameters work in this model if we have more experience data.</p><hr>
+
According to Figure (1-3), we can draw a conclusion that the model we constructed can simulate the process of dynamic change in fluorescence intensity. We can figure out how those parameters work in this model if we have more experience data.</p><hr><br>
<p><strong class="subtitle"><a name="_Toc04" id="Toc04"></a>4. Reference</strong><br></p>
<p><strong class="subtitle"><a name="_Toc04" id="Toc04"></a>4. Reference</strong><br></p>
-
<p align="left">[1] Frank R. Giordano, Maurice D.  Weir, William P. Fox, A First Course in Mathematical Modeling, Third Edition,  Thomson Learning, 2003, 297-329<br>
+
<p align="left"><a name="_ENREF_1" id="_ENREF_1">[1] Frank R. Giordano, Maurice D.  Weir, William P. Fox, <em>A First Course in Mathematical Modeling</em>, Third Edition,  Thomson Learning, <strong>2003</strong>, 297-329</a><br>
-
   [2] RON WEISS, SUBHAYU BASU, SARA  HOOSHANGI, ABIGAIL KALMBACH, DAVID KARIG, RISHABH MEHREJA and ILKA NETRAVALI Genetic  circuit building blocks for cellular computation, communications, and signal  processing, Natural Computing, 2003, 2: 47–84. <br>
+
   <a name="_ENREF_2" id="_ENREF_2">[2] RON WEISS, SUBHAYU BASU, SARA  HOOSHANGI, ABIGAIL KALMBACH, DAVID KARIG, RISHABH MEHREJA and ILKA NETRAVALI Genetic  circuit building blocks for cellular computation, communications, and signal  processing, Natural Computing, <strong>2003</strong>, <em>2</em>: 47–84. </a><br>
-
   [3]You L, Cox RS, Weiss R, Arnold  FH. Programmed population control by cell-cell communication and regulated  killing[J]. Nature, 2004, 428(6985): 868-871. </p>
+
   <a name="_ENREF_3" id="_ENREF_2">[3]You L, Cox RS, Weiss R, Arnold  FH. Programmed population control by cell-cell communication and regulated  killing[J]. <em>Nature</em>, <strong>2004</strong>, <em>428</em>(6985): 868-871. </a></p>
<p>&nbsp;</p></div>
<p>&nbsp;</p></div>
</body>
</body>
</html>
</html>

Latest revision as of 03:46, 27 September 2012

XMU-CSS

XMU

modelingindex

Contents[hide][show]
  • Introduction
  • Modeling
  • Result
  • Reference
  • Model

    Modeling

    1. Introduction
    Ordinary differential equation(s) (ODE) is one of the most popular methods in modeling. Frank R. Giordano and other scientists have introduced it exhaustively. [1] In many computational biological researching, researchers often use it to simulate the dynamics part of biological process. The concentrations of RNA, proteins, and other molecules are represented by time-dependent variables. [2] We used the same method to construct our model.



    2. Modeling
    First of all, there are 4 variables and 4 parameters in this experience. Their names and meanings are listed below.



    Those functions about describing the rate equations of biochemical reactions in the circuit PcIGLT are:

    The initial condition is

    Equation (1) represents the course of growth of E.coli.[3] Equation (2) represents the course of producing and decomposing GFP. OD0 and flu0 is value of OD and flu when t=0. Then, we changed the parameters and figured out the best value for fitting the data of fluorescence intensity.
    Figure 1: Fitting line and data of fluorescence intensity


    Those functions about describing the rate equations of biochemical reactions in the circuit PcIGLT are:

    The initial condition is

    Equation (3) represents the course of growth of E.coli.. Equation (4) represents the course of producing and decomposing GFP. Equation (5) represents the arabinose utilized for inducing. OD0, flu0 and Arc0 is value of OD, flu and Arc when t=0. After that, we changed the parameters and then found out the value fitting the data of fluorescence intensity most.
    Figure 2: Fitting line and data of fluorescence intensity (Value Arc=0.1).

    Figure 3: Fitting line and data of fluorescence intensity (Value Arc=0.1).



    3. Result
    According to Figure (1-3), we can draw a conclusion that the model we constructed can simulate the process of dynamic change in fluorescence intensity. We can figure out how those parameters work in this model if we have more experience data.



    4. Reference

    [1] Frank R. Giordano, Maurice D. Weir, William P. Fox, A First Course in Mathematical Modeling, Third Edition, Thomson Learning, 2003, 297-329
    [2] RON WEISS, SUBHAYU BASU, SARA HOOSHANGI, ABIGAIL KALMBACH, DAVID KARIG, RISHABH MEHREJA and ILKA NETRAVALI Genetic circuit building blocks for cellular computation, communications, and signal processing, Natural Computing, 2003, 2: 47–84.
    [3]You L, Cox RS, Weiss R, Arnold FH. Programmed population control by cell-cell communication and regulated killing[J]. Nature, 2004, 428(6985): 868-871.