Team:Tsinghua-D/Project.html

From 2012.igem.org

(Difference between revisions)
 
(43 intermediate revisions not shown)
Line 2: Line 2:
<html xmlns="http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<head>
-
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 
-
<title>无标题文档</title>
 
<style type="text/css">
<style type="text/css">
.guide {
.guide {
Line 22: Line 20:
}
}
.STYLE1 {
.STYLE1 {
-
font-size: 24px;
+
font-size: 21px;
font-weight: bold;
font-weight: bold;
}
}
.STYLE3 {font-family: Verdana, Arial, Helvetica, sans-serif; font-weight: bold; }
.STYLE3 {font-family: Verdana, Arial, Helvetica, sans-serif; font-weight: bold; }
 +
.STYLE5 {
 +
font-size: 24px;
 +
font-weight: bold;
 +
}
 +
.STYLE6 {font-size: 28px}
 +
 +
#Layer2 {
 +
position:absolute;
 +
width:823px;
 +
height:175px;
 +
z-index:1;
 +
top: 349px;
 +
left: 78px;
 +
color: #DD8000;
 +
background-color: #BF7506;
 +
filter: Alpha(Opacity=30);
 +
}
 +
#SOM {
 +
    font-size: 12pt;
 +
    background-color: rgba(255, 255, 0, 0.5);
 +
}
</style>
</style>
</head>
</head>
Line 35: Line 54:
<table width="965" border="0" align="left">
<table width="965" border="0" align="left">
   <tr>
   <tr>
-
     <td class="main"><p align="center" class="STYLE1">A Computer-aided  Temperature-response Regulatory RNA Design</p>
+
     <td class="main"><blockquote>
-
      <p align="center"><strong>CHEN Huaiqing1, CHEN Zheqin2, FAN Xiao2, LI Renkuan2, LI Tianyi1, LI Zhangqinang1, PENG Liying2, SUN Xiaochen2, WANG Xuan2, WANG Zhipeng2, XIE Hengyi1, YANG Tianfang2, SHI Binbin2,</strong><strong>※</strong><strong> and DING Hongxu2,</strong><strong>※ </strong></p>
+
      <blockquote>
-
      <ul>
+
        <p align="center" class="STYLE5">A Computer-aided  Temperature-response Regulatory RNA Design</p>
-
         <li><strong>School of life science, Tsinghua  University</strong></li>
+
        <p align="center"><strong>CHEN Huaiqing1, CHEN Zheqin2, FAN Xiao2, LI Renkuan2, LI Tianyi1, LI Zhangqinang1, PENG Liying2, SUN Xiaochen2, WANG Xuan2, WANG Zhipeng2, XIE Hengyi1, YANG Tianfang2, SHI Binbin2,</strong><strong>※</strong><strong> and DING Hongxu2,</strong><strong>※</strong><strong> </strong></p>
-
        <li><strong>iGEM Tsinghua-D team, Tsinghua  University</strong></li>
+
        <p><strong>&nbsp;</strong></p>
-
      </ul>
+
         <ol>
-
      <p><strong>※</strong><strong>. To whom correspondence should be addressed, SH</strong><strong>I Binbin, </strong><a href="mailto:ltbyshi@gmail.com"><strong>ltbyshi@gmail.com</strong></a><strong>; DING Hongxu, </strong><a href="mailto:poulainding@163.com"><strong>poulainding@163.com</strong></a><strong>.</strong></p>
+
          <li><strong>School of Life Science, Tsinghua  University</strong></li>
-
      <p><strong>Abstract</strong><strong>  </strong>The first software that can design temperature-sensing regulatory RNA – RNAThermo is presented in this article.  Parameters were set and several temperature-sensing regulatory RNA sequences were given by the RNAThermo.  The designed RNAs are verified both on the structural and functional aspects.  At the end of the article, RNAThermo’s potential application in fermentation industry is discussed.<strong> </strong></p>
+
          <li><strong>iGEM Tsinghua-D team, Tsinghua  University</strong></li>
-
      <p><em>Keywords:</em> RNA Thermometer, computer, design</p>
+
        </ol>
-
      <p><strong>Introduction</strong></p>
+
        <p><strong>&nbsp;&nbsp;&nbsp;&nbsp;※</strong><strong>. To whom correspondence should be addressed, SH</strong><strong>I Binbin, </strong><a href="mailto:ltbyshi@gmail.com"><strong>ltbyshi@gmail.com</strong></a><strong>; DING Hongxu, </strong><a href="mailto:poulainding@163.com"><strong>poulainding@163.com</strong></a><strong>.</strong><strong>&nbsp;</strong></p>
-
      <p>Besides  exploration, explanation and prediction, the ultimate goal of science is creation.  In the field of life science,  enthusiasm towards creation originates the synthetic biology.  During the last decade, numerous artificial  biological networks had been made.  However, no nodes within these networks are artificially made thus such networks cannot  be recognized as ‘created’.            Recently, the creation of nodes inside biological networks emerges as a hotspot.  Because of its structural simplicity and manipulation convenience, RNATs  become an ideal model for conducting such researches.</p>
+
 
-
      <p><strong>RNA Thermometer (RNAT)</strong></p>
+
        <div align="center" id="SOM">
-
      <p align="left">Resides  in the 5’ untranslated region (5’UTR) of the whole mRNA, RNA thermometer (RNAT) is a kind of temperature-sensing sequence.  As the environmental temperature changes, the RNAT can fold into a series of different secondary structure Some of the structures can block ribosomes’ access to the mRNA thus hinder translation (referred to as unmelted structure).  Other structures can cause ribosomes’ binding to the mRNA and the initiation of translation (referred to as melted structure).  By shifting from the two kinds of structures, the RNAT regulate gene expression in the level of translation <strong>(1)</strong>.  </p>
+
        <p align="left" ><strong><br>
-
      <p><strong>The software RNAThermo can design RNATs that meet the  given parameters</strong></p>
+
          &nbsp;&nbsp;            This article can be downloaded from <u><a href="http://www.htys.org/extra/igem2012/doc/article.pdf">HERE</a></u> (PDF).</strong><br /><br /></p>
-
      <p align="left">Based on biological and physical principle, adapting computer algorithms, RNAThermo designs RNATs that meet the given parameters.  What the user should tell the software are the regulation temperature, the structure (both unmelted structure and melted structure) of the RNAT and the SD sequence position of the RNAT.  RNAThermo gives the sequences of RNATs that fulfill these requirements.  </p>
+
        <p align="left" ><strong>&nbsp;&nbsp;&nbsp;Supporting onl</strong><strong>ine materials can be  downloaded from <u><a href="http://www.htys.org/extra/igem2012/doc/som.pdf">HERE</a></u> (PDF).</strong><br /><br /></p>
-
      <p><strong>The design of RNATs based on biological principle</strong></p>
+
        <p align="left" ><strong>&nbsp;&nbsp;&nbsp;A demo for RNAThermo can be found <u><a href="https://2012.igem.org/Team:Tsinghua-D/Demo.html">HERE</a></u>.</strong><br /><br /></p>
-
      <p align="left">The principle behind the RNATs’ response to temperature is simple: At low temperatures, sequence that binds to ribosome will be trapped in a hairpin structure.  Increasing temperature destabilizes the structure such that the trapped sequence becomes accessible, allowing translation to be initiated.  The following <strong>(Figure 1)</strong> is the schematic diagram <strong>(2)</strong>:</p>
+
        <p align="left" ><strong>&nbsp;&nbsp;&nbsp;RNAThermo can be downloaded from <u><a href="http://www.htys.org/extra/igem2012/software/RNAThermo.zip">HERE</a></u>.</strong><br /><br /></p>
-
       <p align="center"><img src="https://static.igem.org/mediawiki/2012/7/73/Project-figure1.png" width="273" height="327"></p>
+
        </div>
-
      <p align="center"><strong>Figure 1.  </strong>Structural change of RNAT’s according to the environmental  temperature.  The SD stands for  Shine-Dalgarno sequence, which is recognized and bind by ribosome to initiate translation.  The AUG stands for start codon, from where  the translation begins.</p>
+
 
-
      <p>One example for this mechanism is  the regulation of <em>E.Coli’</em>s <em>rpoH</em> gene <strong>(Figure 2)</strong>.  Responded to  environmental temperature change, <em>rpoH</em> gene regulates the expression of the heat shock protein.  Low temperatures (30 °C) induces a bend in the ribosome-binding site (RBS)-associated downstream box (DB) region, thereby interfering with ribosome binding.  High temperature (42 °C) disrupt the bend and initiate the process of translation <strong>(3)</strong>.</p>
+
        <p align="center"><a href="https://static.igem.org/mediawiki/2012/c/c9/THD_Figures_big.png"><img src="https://static.igem.org/mediawiki/2012/1/1b/THD_Figures.png" /></a></p>
-
      <p align="center"><img src="https://static.igem.org/mediawiki/2012/0/05/Project-figure2.png" width="448" height="662"> </p>
+
        <p align="left">&nbsp;</p>
-
      <p align="center"><strong>Figure 2.</strong>  <strong>a. </strong>Formation of stem III in  the <em>rpoH</em> transcript at low  temperatures (30 °C) induces a bend in the ribosome-binding site (RBS)-associated  downstream box (DB) region, thereby interfering with ribosome binding.  <strong>b. </strong>A  rise in temperature to 42 °C opens stem III and stem I of the <em>rpoH</em> mRNA, liberates the AUG start codon  and DB region, facilitates ribosome binding.</p>
+
        <p><br />
-
      <p align="left">Inspired by such mechanism, our group designed a series of RNATs whose SD sequence will have trap-release structural change according to the environmental temperature.  The following is the schematic diagram of the  RNATs we designed <strong>(Figure 3)</strong>:</p>
+
          <strong>Abstract</strong><strong>  </strong>The first software that designs  temperature-sensing regulatory RNA – RNAThermo is presented in this article.  Parameters were set and several temperature-sensing regulatory RNA sequences were given by the RNAThermo.  The designed RNAs have been verified both as  to on the structural and functional aspects.  RNAThermo’s potential application in the fermentation industry is discussed.<strong> </strong></p>
-
      <p align="center"><img src="https://static.igem.org/mediawiki/2012/c/c3/Project-figure3.png" width="99" height="306"></p>
+
        <p><em>Keywords:</em> RNA Thermometer, Computer, Design</p>
-
      <p align="center"><strong>Figure 3.  </strong>Schematic diagram of the RNATs we designed.  The red box indicates the SD sequence.</p>
+
        <p><strong>Introduction</strong></p>
-
      <p><strong>The design of RNATs based on physical principle</strong></p>
+
        <p>In addition to exploration, explanation and prediction, the ultimate goal of science is creation.  In the field of life science, enthusiasm towards creation originates the synthetic biology.  During the last decade, numerous artificial  biological networks had been made by rearranging the exited biological macromoleculesRecently, creation of the macromolecules inside biological networks emerges as a hotspot.  Because of structural simplicity and manipulation convenience, RNA becomes an ideal model for conducting such researches.  In this article, the first software that designs  temperature-sensing regulatory RNA - RNAThermo is reported.  Structural and functional verifications of  the designed RNATs were made.  RNAThermo’s  potential application in the fermentation industry is discussed:  the software provides a new method for  achieving controlled expression of products in the fermentation industry.</p>
-
      <p align="left">To give RNAT sequences that meet the given parameters, the central problem is to predict RNATs’ secondary structure at a given temperature.  Two methods are adapted according to the computer algorithm’s requirement (More details will be articulated in <strong>‘The design of RNATs adapting computer  algorithms’</strong>).  </p>
+
        <p><strong>RNA Thermometer (RNAT)</strong></p>
-
      <p align="left">One principle adapted in predicting RNA secondary structure is free energy minimization <strong>(4)</strong>.  Secondary structure with the least free energy is considered to be the optimal solution <strong>(5)</strong>.</p>
+
        <p align="left">Residing in the 5’ untranslated region (5’UTR) of the entire mRNA, the RNA thermometer (RNAT) is a kind of temperature-sensing sequence.  As the environmental temperature changes, the RNAT folds into a series of different secondary structuresSeveral of the structures block ribosomes’ access to the mRNA thus hinder translation (referred to as unmelted structure).  Other structures cause ribosomes’ binding to the mRNA and the initiation of translation (referred to as melted structure).  By shifting from the two kinds of structures, the RNAT regulates gene expression in the level of translation <strong>(1)</strong>.  </p>
-
      <p align="left">Another principle adapted here is partition function method <strong>(6)</strong>.  Rather than give one definite structure as the free energy minimization method, partition function tells the probability of each secondary structure’s appearance.  In the following equation, Q stands for partition function and P (structure) stands for the probability of one specific structure’s appearance.</p>
+
        <p><strong>The software RNAThermo designs RNATs that meet the  given parameters</strong></p>
-
      <p align="center"> </p>
+
        <p align="left">Based on biological and physical principles, adapting computer algorithms, TNAThermo designs RNATs that meet the given parameters.  What the user tells  the software are the regulation temperature, the structure (both unmelted structure and melted structure) of the RNAT and the SD sequence position of the RNAT.  RNAThermo gives the sequences of RNATs that fulfill these requirements.  </p>
-
      <p class="STYLE3">The design of RNATs adapting computer algorithms</p>
+
        <p><strong>The design of RNATs based on biological principles</strong></p>
-
      <p>This part is included in another page of our wiki. </p>
+
        The principle behind the RNATs’ response to temperature is fundamental: At low temperatures, the sequence that binds to ribosomes will be trapped in a hairpin structure.  Increasing temperature destabilizes the structure such that the trapped sequence becomes accessible, allowing translation to be initiated.  The following <strong>(Figure 1)</strong> is the schematic diagram <strong>(2)</strong>:
-
      <p>&nbsp;</p>
+
        <p align="center" class="STYLE1">&nbsp;</p>
-
      <p><strong>Verification of the designed RNATs’ secondary  structure</strong></p>
+
        </blockquote>
-
      <p align="left">The first step in verification the <em>in silico </em>design is testifying the designed structure <em>in vitro</em>.  In-line probing method is adapted to measure the RNATs’ structure <strong>(10)</strong>.  The results are as shown in <strong>Figure 5</strong>.</p>
+
    </blockquote>
-
      <p align="center">&nbsp;</p>
+
       <ul><li><blockquote><p align="center"><img src="https://static.igem.org/mediawiki/2012/7/73/Project-figure1.png" width="273" height="327"></p>
-
      <p align="center"><strong>Figure 5</strong></p>
+
            <p align="left"><strong>Figure 1.  </strong>Structural change of RNAT’s according to the environmental  temperature.  The SD stands for  Shine-Dalgarno sequence, which is recognized and bind by ribosome to initiate translation.  The AUG stands for start codon, from where  the translation begins.</p>
-
      <p align="left"><strong>Verification of the designed  RNATs’ temperature-sensing regulatory function</strong></p>
+
            <p>One example for this mechanism is the regulation of <em>E.Coli’</em>s <em>rpoH</em> gene <strong>(Figure 2)</strong>.  Responding to  environmental temperature change, <em>rpoH</em> gene regulates the expression of the heat shock protein.  Low temperature (30℃) induces a bend in the ribosome-binding site (RBS)-associated downstream box (DB) region, thereby interfering with ribosome binding.  High temperature (42℃) disrupts the bend and initiates the process of translation <strong>(3)</strong>.</p>
-
      <p align="left">Then,  rectification of the temperature-response regulatory function <em>in vivo</em> should be taken in verification of the <em>in silico </em>design.  GFP is adapted as reporter gene in measuring  the RNATs’ temperature-response regulatory function.  The results are shown in <strong>Figure 6</strong>.</p>
+
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/0/05/Project-figure2.png" width="448" height="662"> </p>
-
      <p align="center"><img src="https://static.igem.org/mediawiki/2012/6/6d/Project-figure6.png" width="486" height="48"> </p>
+
            <p align="left"><strong>Figure 2.</strong>  <strong>a. </strong>Formation of stem III in  the <em>rpoH</em> transcript at low  temperatures (30 °C) induces a bend in the ribosome-binding site (RBS)-associated  downstream box (DB) region, thereby interfering with ribosome binding.  <strong>b. </strong>A  rise in temperature to 42 °C opens stem III and stem I of the <em>rpoH</em> mRNA, liberates the AUG start codon  and DB region, facilitates ribosome binding.</p>
-
      <p align="center"><strong>Figure 6</strong></p>
+
            <p align="left">Inspired by such a mechanism, our group designed a series of RNATs whose SD sequence will have trap-release structural change according to the environmental temperature.  The following is the schematic diagram of the  RNATs we designed <strong>(Figure 3)</strong>:</p>
-
      <p align="left"><strong>Potential Application in  Fermentation Industry</strong></p>
+
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/c/c3/Project-figure3.png" width="99" height="306"></p>
-
      <p align="left">Computer  aided RNAT design provides a new method for achieving controlled expression of  products in fermentation industry.  Engineered  microorganisms sense a temperature signal and initiate the regulation.  The results are shown in <strong>Figure 7</strong>.</p>
+
            <p align="center"><strong>Figure 3.  </strong>Schematic diagram of the RNATs we designed.  The red box indicates the SD sequence.</p>
-
      <p align="center"> <strong> </strong><img src="https://static.igem.org/mediawiki/2012/2/25/Project-figure7.png" width="657" height="121"><br>
+
            <p>&nbsp;</p>
-
          <strong>Figure 7</strong></p>
+
            <p><strong>The design of RNATs based on physical principles</strong></p>
-
      <p align="left"><strong>Reference</strong><br>
+
            <p align="left">To give RNAT sequences that meet the given parameters, the central problem is to predict RNATs’ secondary structure at a given temperature.  Two methods are adapted according to the computer algorithm’s requirement.  </p>
-
          <strong>(1). </strong>Jens Kortmann and Franz Narberhaus.  Bacterial RNA thermometers: molecular zippers  and switches.  <em>NATURE REVIEWS MICROBIOLOGY</em>, VOLUME 10, 265, APRIL 2012 <br>
+
            <p align="left">One principle adapted in predicting RNA secondary structure is free energy minimization <strong>(4)</strong>.  A secondary structure with the least free energy is regarded to be the optimal solution <strong>(5)</strong>.</p>
-
          <strong>(2). </strong>Birgit Klinkert and Franz  Narberhaus.  Microbial thermosensors.  <em>Cell.  Mol. Life Sci.</em>  (2009) 66:2661–2676<br>
+
            <p align="left">Another principle adapted here is the  partition function method <strong>(6)</strong>.  Rather than give one definite structure as the free energy minimization method, the partition function gives the probability of each secondary structure’s appearance.  In the following equation, Q stands for the partition function and P (structure) stands for the probability of one specific structure’s appearance.</p>
-
          <strong>(3).</strong> Miyo Terao Morita, Yoshiyuki  Tanaka, Takashi S. Kodama, Yoshimasa Kyogoku,<br>
+
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/archive/f/f2/20120926212451!Project-figure-%284%29.png"></p>
-
        Hideki Yanagi and Takashi Yura.  Translational induction of heat shock transcription  factor sigma32: evidence for a built-in RNA thermosensor..  <em>Genes Dev. </em>1999 13: 655-665 <br>
+
            <p><strong>The design of RNATs adapting computer algorithms</strong></p>
-
  <strong>(4). </strong>David H. Mathews.  Revolutions in RNA Secondary Structure  Prediction.  <em>J. Mol. Biol.</em> (2006) 359, 526–532<br>
+
            <p>The software RNAThermo for designing an RNA  thermometer is presented.  RNAThermo is  based on the Vienna RNA Package, which is a program for RNA Secondary Structure  Prediction and Comparison <strong>(7)</strong>. </p>
-
  <strong>(5).</strong> David H Mathews and Douglas H  Turner.  Prediction of RNA secondary  structure by free energy minimization.  <em>Current Opinion in Structural Biology</em> 2006, 16:270–278<br>
+
            <p>Before introducing RNAThermo, this is the  basic RNAT design problem: given regulation temperature, the structure of the  RNAT (both unmelted structure S1 and melted structure S2) and the SD sequence  position of the RNAT, find an RNAT whose SD sequence will be released from the  hairpin structure above the desired temperature.</p>
-
  <strong>(6).</strong> J. S. McCASKlLL.  The Equilibrium Partition Function and Base  Pair Binding Probabilities for RNA Secondary Structure.  <em>Biopolymers</em>,  Vol. 29,1105-1119 (1990)<br>
+
            A three-stage algorithm is designed to solve the  problem (<strong>workflow is present in Figure 4</strong>):  A set of sequences that fold into the S1  structure at low temperature is found.  Sequences  that cannot fold into the S2 structure at the high temperature are screened out.  After these two stages, sequences meet the  structural requirement are obtained.  However,  regulation temperatures of the obtained sequences remain unmeasured.  The third stage is designed to screen RNATs to  meet the temperature requirement.
-
  <strong>(7). </strong><a href="http://www.tbi.univie.ac.at/~ivo/RNA/">http://www.tbi.univie.ac.at/~ivo/RNA/</a> <br>
+
            <p><img src="https://static.igem.org/mediawiki/2012/archive/8/8c/20120926211800!THD-Project-figure4.png" width="659" height="466"></p>
-
  <strong>(8).</strong> <a href="http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html">http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html</a> <br>
+
            <p align="center"><strong>Figure 4.  </strong>Workflow  of designing an RNA thermometer<strong></strong></p>
-
  <strong>(9).</strong> L.  Hofacker, W. Fontan.  Fast folding and  comparison of RNA secondary structures. <em>Monatshefte  fur Chemie </em>, 125, 167-188.<br>
+
            <p><strong>Verification of the designed RNATs’ secondary  structure</strong></p>
-
  <strong>(10).</strong> In-Line Probing Analysis of  Riboswitches.Elizabeth E.  Regulski and  Ronald R. Breaker.  <em>NATURE PROTOCOL  EXCHANGE </em><a href="http://www.nature.com/protocolexchange/protocols/1889">http://www.nature.com/protocolexchange/protocols/1889</a> </p>
+
            <p align="left">The first step in verification the <em>in silico </em>design is testing the designed structure <em>in vitro</em>.  In-line probing method is adapted to measure the RNATs’ structure <strong>(10)</strong>.   The results are as shown in <strong>Figure 5</strong>.</p>
-
      <p align="left"><strong>Acknowledgement</strong></p>
+
            <p align="center">&nbsp;</p>
-
      <p align="left">Thank  Prof. CHEN Guoqiang, Prof. SUN Zhirong and Prof. DAI Junbiao for devoting  guidance in the project.  Thank Prof. Tom  Kelie for his careful revision of the PPT and the report.  Thanks Dr. YIN Ping and Dr. QU Peng for his  kind help in the RNA experiments.  Thanks FU Xiaozhi and LI Teng for their generous help in the molecular biology experiment.</p>
+
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/f/f7/In-line_probing.JPG" /></p>
-
      <p align="left"><strong>Supporting online materials</strong></p>
+
            <p align="left"><strong>Figure 5</strong>&nbsp;&nbsp;Result of the in-line probing.  The sequence of the RNAT is 5’-GAAUACAUGUUAAUUAUGCCAUCCAGGCAUACAGAAGAAGUUAAU-3’ and the regulation temperature of the RNAT is 39.5℃.  RNAT loaded in lane 1, 2, 3 was incubated at 46℃ for 20h, 26h and 32h.  RNAT loaded in lane 4, 5, 6 was incubated at 42℃ for 20h, 26h and 32h.  RNAT loaded in lane 7, 8, 9 was incubated at 37℃ for 20h, 26h and 32h.  The red boxes mark sections that melt when temperature rises.</p>
-
       </td>
+
            <p align="left">When temperature rises, sections marked by the red boxes melt thus bands appear.  The results show strong evidence that the designed RNATs can fold into desired secondary structure.</p>
 +
            <p align="left">&nbsp;</p>
 +
         
 +
            <p align="left"><strong>Verification of the designed  RNATs’ temperature-sensing regulatory function</strong></p>
 +
            <p align="left">Then,  rectification of the temperature-response regulatory function <em>in vivo</em> should be taken in verification of the <em>in silico </em>design.  GFP is adapted as reporter gene in measuring  the RNATs’ temperature-response regulatory function.  The results are shown in <strong>Figure 6</strong>.</p>
 +
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/6/6d/Project-figure6.png" width="486" height="48"> </p>
 +
            <p align="center"><strong>Figure 6</strong>&nbsp;&nbsp;Schematic diagram of ‘RNAT + GFP’ gene.</p>
 +
            <p align="left">E.Coli were cultured in 30℃ until they reached stationary phrase.  Then the E.Coli were divided into two flasks.  For the experimental group, a 45℃ heat shock was exerted to the E.Coli.  For the control group, the temperature remained 30℃.  Photos were taken after a two-hour adjustment.  Two RNAT sequences were tested and the results are shown in <strong>Figure 8</strong> and <strong>Figure 9</strong>.</p>
 +
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/4/4e/R3_report1.png" /></p>
 +
            <p align="left"><strong>Figure 8</strong>&nbsp;&nbsp;Result of the verification of the RNAT’s regulatory function of the RNAT.  The sequence is 5’-ACACGGAUCUACUAGCGUGAAUUUAUCACGGGAAGAAGUCGCCGUAA-3’.  <strong>a</strong>.  RNAT + GFP at 30℃.  <strong>b</strong>.  RNAT + GFP at 45℃.  <strong>c</strong>.  RNAT Only at 30℃.  <strong>d</strong>.  RNATOnly at 30℃.  <strong>e</strong>.  Histogram shows average intensity of the GFP’s luminance.</p>
 +
            <p align="left">&nbsp;</p>
 +
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/2/2c/R2-report.png" /></p>
 +
            <p align="left"><strong>Figure 9.</strong>&nbsp;&nbsp;Result of the verification of the RNAT’s regulatory function of the RNAT.  The sequence is 5’-GAAUACAUGUUAAUUAUGCCAUCCAGGCAUACAGAAGAAGUUAAT-3’.  <strong>a</strong>.  RNAT + GFP at 30℃.  <strong>b</strong>.  RNAT + GFP at 45℃.  <strong>c</strong>.  RNAT Only at 30℃.  <strong>d</strong>.  RNAT Only at 30℃.  <strong>e</strong>.  Histogram shows average intensity of the GFP’s luminance.</p>
 +
            <p align="left">The results show strong evidence that the designed RNATs can function as desired.</p>
 +
            <p align="left">&nbsp;</p>
 +
            <p align="left"><strong>Potential Application in  Fermentation Industry</strong></p>
 +
            <p align="left">Computer  aided RNAT design provides a new method for achieving controlled expression of  products in fermentation industry.  Engineered  microorganisms sense a temperature signal and initiate the regulation.<strong>(Figure 10)</strong>.</p>
 +
            <p align="center"> <strong> </strong><img src="https://static.igem.org/mediawiki/2012/2/25/Project-figure7.png" width="657" height="56"><br>
 +
            <strong>Figure 10.</strong>&nbsp;&nbsp;Schematic diagram of ‘RNAT + Signal Peptide + Lysozyme’ gene.</p>
 +
            <p align="left">&nbsp;</p>
 +
            <p align="left"><strong>Reference</strong><br>
 +
              <strong>(1). </strong>Jens Kortmann and Franz Narberhaus.  Bacterial RNA thermometers: molecular zippers  and switches.  <em>NATURE REVIEWS MICROBIOLOGY</em>, VOLUME 10, 265, APRIL 2012 <br>
 +
              <strong>(2). </strong>Birgit Klinkert and Franz  Narberhaus.  Microbial thermosensors.  <em>Cell.  Mol. Life Sci.</em>  (2009) 66:2661–2676<br>
 +
              <strong>(3).</strong> Miyo Terao Morita, Yoshiyuki  Tanaka, Takashi S. Kodama, Yoshimasa Kyogoku,<br>
 +
              Hideki Yanagi and Takashi Yura.  Translational induction of heat shock transcription  factor sigma32: evidence for a built-in RNA thermosensor..  <em>Genes Dev. </em>1999 13: 655-665 <br>
 +
              <strong>(4). </strong>David H. Mathews.  Revolutions in RNA Secondary Structure  Prediction.  <em>J. Mol. Biol.</em> (2006) 359, 526–532<br>
 +
              <strong>(5).</strong> David H Mathews and Douglas H  Turner.  Prediction of RNA secondary  structure by free energy minimization.  <em>Current Opinion in Structural Biology</em> 2006, 16:270–278<br>
 +
              <strong>(6).</strong> J. S. McCASKlLL.  The Equilibrium Partition Function and Base  Pair Binding Probabilities for RNA Secondary Structure.  <em>Biopolymers</em>,  Vol. 29,1105-1119 (1990)<br>
 +
              <strong>(7). </strong><a href="http://www.tbi.univie.ac.at/~ivo/RNA/">http://www.tbi.univie.ac.at/~ivo/RNA/</a> <br>
 +
              <strong>(8).</strong> <a href="http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html">http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html</a> <br>
 +
              <strong>(9).</strong> L.  Hofacker, W. Fontan.  Fast folding and  comparison of RNA secondary structures. <em>Monatshefte  fur Chemie </em>, 125, 167-188.<br>
 +
              <strong>(10).</strong> In-Line Probing Analysis of  Riboswitches.Elizabeth E.  Regulski and  Ronald R. Breaker.  <em>NATURE PROTOCOL  EXCHANGE </em><a href="http://www.nature.com/protocolexchange/protocols/1889">http://www.nature.com/protocolexchange/protocols/1889</a> </p>
 +
            <p align="left">&nbsp;</p>
 +
            <p align="left"><strong>Acknowledgement</strong></p>
 +
            <p align="left">Thank  Prof. CHEN Guoqiang, Prof. SUN Zhirong and Prof. DAI Junbiao for their guidance in the project.  Thank Prof. Tom Kellie for his revision of the PPT and the report.  Thanks Dr. YIN Ping and Dr. QU Peng for their help in the RNA experiments.  Thanks FU Xiaozhi and LI Teng for their help in the molecular biology experiments.</p>
 +
            <p align="left">&nbsp;</p>
 +
          </blockquote>
 +
        </li>
 +
       </ul>    </td>
   </tr>
   </tr>
   <tr>
   <tr>

Latest revision as of 02:52, 27 September 2012


A Computer-aided Temperature-response Regulatory RNA Design

CHEN Huaiqing1, CHEN Zheqin2, FAN Xiao2, LI Renkuan2, LI Tianyi1, LI Zhangqinang1, PENG Liying2, SUN Xiaochen2, WANG Xuan2, WANG Zhipeng2, XIE Hengyi1, YANG Tianfang2, SHI Binbin2, and DING Hongxu2,

 

  1. School of Life Science, Tsinghua University
  2. iGEM Tsinghua-D team, Tsinghua University

    ※. To whom correspondence should be addressed, SHI Binbin, ltbyshi@gmail.com; DING Hongxu, poulainding@163.com. 


   This article can be downloaded from HERE (PDF).


   Supporting online materials can be downloaded from HERE (PDF).

   A demo for RNAThermo can be found HERE.

   RNAThermo can be downloaded from HERE.

 


Abstract  The first software that designs temperature-sensing regulatory RNA – RNAThermo is presented in this article.  Parameters were set and several temperature-sensing regulatory RNA sequences were given by the RNAThermo.  The designed RNAs have been verified both as to on the structural and functional aspects.  RNAThermo’s potential application in the fermentation industry is discussed.

Keywords: RNA Thermometer, Computer, Design

Introduction

In addition to exploration, explanation and prediction, the ultimate goal of science is creation.  In the field of life science, enthusiasm towards creation originates the synthetic biology.  During the last decade, numerous artificial biological networks had been made by rearranging the exited biological macromolecules.  Recently, creation of the macromolecules inside biological networks emerges as a hotspot.  Because of structural simplicity and manipulation convenience, RNA becomes an ideal model for conducting such researches.  In this article, the first software that designs temperature-sensing regulatory RNA - RNAThermo is reported.  Structural and functional verifications of the designed RNATs were made.  RNAThermo’s potential application in the fermentation industry is discussed:  the software provides a new method for achieving controlled expression of products in the fermentation industry.

RNA Thermometer (RNAT)

Residing in the 5’ untranslated region (5’UTR) of the entire mRNA, the RNA thermometer (RNAT) is a kind of temperature-sensing sequence.  As the environmental temperature changes, the RNAT folds into a series of different secondary structures.  Several of the structures block ribosomes’ access to the mRNA thus hinder translation (referred to as unmelted structure).  Other structures cause ribosomes’ binding to the mRNA and the initiation of translation (referred to as melted structure).  By shifting from the two kinds of structures, the RNAT regulates gene expression in the level of translation (1)

The software RNAThermo designs RNATs that meet the given parameters

Based on biological and physical principles, adapting computer algorithms, TNAThermo designs RNATs that meet the given parameters.  What the user tells the software are the regulation temperature, the structure (both unmelted structure and melted structure) of the RNAT and the SD sequence position of the RNAT.  RNAThermo gives the sequences of RNATs that fulfill these requirements. 

The design of RNATs based on biological principles

The principle behind the RNATs’ response to temperature is fundamental: At low temperatures, the sequence that binds to ribosomes will be trapped in a hairpin structure.  Increasing temperature destabilizes the structure such that the trapped sequence becomes accessible, allowing translation to be initiated.  The following (Figure 1) is the schematic diagram (2):

 

  • Figure 1.  Structural change of RNAT’s according to the environmental temperature.  The SD stands for Shine-Dalgarno sequence, which is recognized and bind by ribosome to initiate translation.  The AUG stands for start codon, from where the translation begins.

    One example for this mechanism is the regulation of E.Coli’s rpoH gene (Figure 2).  Responding to environmental temperature change, rpoH gene regulates the expression of the heat shock protein.  Low temperature (30℃) induces a bend in the ribosome-binding site (RBS)-associated downstream box (DB) region, thereby interfering with ribosome binding.  High temperature (42℃) disrupts the bend and initiates the process of translation (3).

    Figure 2.  a. Formation of stem III in the rpoH transcript at low temperatures (30 °C) induces a bend in the ribosome-binding site (RBS)-associated downstream box (DB) region, thereby interfering with ribosome binding.  b. A rise in temperature to 42 °C opens stem III and stem I of the rpoH mRNA, liberates the AUG start codon and DB region, facilitates ribosome binding.

    Inspired by such a mechanism, our group designed a series of RNATs whose SD sequence will have trap-release structural change according to the environmental temperature.  The following is the schematic diagram of the RNATs we designed (Figure 3):

    Figure 3.  Schematic diagram of the RNATs we designed.  The red box indicates the SD sequence.

     

    The design of RNATs based on physical principles

    To give RNAT sequences that meet the given parameters, the central problem is to predict RNATs’ secondary structure at a given temperature.  Two methods are adapted according to the computer algorithm’s requirement. 

    One principle adapted in predicting RNA secondary structure is free energy minimization (4).  A secondary structure with the least free energy is regarded to be the optimal solution (5).

    Another principle adapted here is the partition function method (6).  Rather than give one definite structure as the free energy minimization method, the partition function gives the probability of each secondary structure’s appearance.  In the following equation, Q stands for the partition function and P (structure) stands for the probability of one specific structure’s appearance.

    The design of RNATs adapting computer algorithms

    The software RNAThermo for designing an RNA thermometer is presented.  RNAThermo is based on the Vienna RNA Package, which is a program for RNA Secondary Structure Prediction and Comparison (7).

    Before introducing RNAThermo, this is the basic RNAT design problem: given regulation temperature, the structure of the RNAT (both unmelted structure S1 and melted structure S2) and the SD sequence position of the RNAT, find an RNAT whose SD sequence will be released from the hairpin structure above the desired temperature.

    A three-stage algorithm is designed to solve the problem (workflow is present in Figure 4):  A set of sequences that fold into the S1 structure at low temperature is found.  Sequences that cannot fold into the S2 structure at the high temperature are screened out.  After these two stages, sequences meet the structural requirement are obtained.  However, regulation temperatures of the obtained sequences remain unmeasured.  The third stage is designed to screen RNATs to meet the temperature requirement.

    Figure 4.  Workflow of designing an RNA thermometer

    Verification of the designed RNATs’ secondary structure

    The first step in verification the in silico design is testing the designed structure in vitro.  In-line probing method is adapted to measure the RNATs’ structure (10).  The results are as shown in Figure 5.

     

    Figure 5  Result of the in-line probing. The sequence of the RNAT is 5’-GAAUACAUGUUAAUUAUGCCAUCCAGGCAUACAGAAGAAGUUAAU-3’ and the regulation temperature of the RNAT is 39.5℃. RNAT loaded in lane 1, 2, 3 was incubated at 46℃ for 20h, 26h and 32h. RNAT loaded in lane 4, 5, 6 was incubated at 42℃ for 20h, 26h and 32h. RNAT loaded in lane 7, 8, 9 was incubated at 37℃ for 20h, 26h and 32h. The red boxes mark sections that melt when temperature rises.

    When temperature rises, sections marked by the red boxes melt thus bands appear. The results show strong evidence that the designed RNATs can fold into desired secondary structure.

     

    Verification of the designed RNATs’ temperature-sensing regulatory function

    Then, rectification of the temperature-response regulatory function in vivo should be taken in verification of the in silico design.  GFP is adapted as reporter gene in measuring the RNATs’ temperature-response regulatory function.  The results are shown in Figure 6.

    Figure 6  Schematic diagram of ‘RNAT + GFP’ gene.

    E.Coli were cultured in 30℃ until they reached stationary phrase. Then the E.Coli were divided into two flasks. For the experimental group, a 45℃ heat shock was exerted to the E.Coli. For the control group, the temperature remained 30℃. Photos were taken after a two-hour adjustment. Two RNAT sequences were tested and the results are shown in Figure 8 and Figure 9.

    Figure 8  Result of the verification of the RNAT’s regulatory function of the RNAT. The sequence is 5’-ACACGGAUCUACUAGCGUGAAUUUAUCACGGGAAGAAGUCGCCGUAA-3’. a. RNAT + GFP at 30℃. b. RNAT + GFP at 45℃. c. RNAT Only at 30℃. d. RNATOnly at 30℃. e. Histogram shows average intensity of the GFP’s luminance.

     

    Figure 9.  Result of the verification of the RNAT’s regulatory function of the RNAT. The sequence is 5’-GAAUACAUGUUAAUUAUGCCAUCCAGGCAUACAGAAGAAGUUAAT-3’. a. RNAT + GFP at 30℃. b. RNAT + GFP at 45℃. c. RNAT Only at 30℃. d. RNAT Only at 30℃. e. Histogram shows average intensity of the GFP’s luminance.

    The results show strong evidence that the designed RNATs can function as desired.

     

    Potential Application in Fermentation Industry

    Computer aided RNAT design provides a new method for achieving controlled expression of products in fermentation industry.  Engineered microorganisms sense a temperature signal and initiate the regulation.(Figure 10).


    Figure 10.  Schematic diagram of ‘RNAT + Signal Peptide + Lysozyme’ gene.

     

    Reference
    (1). Jens Kortmann and Franz Narberhaus.  Bacterial RNA thermometers: molecular zippers and switches.  NATURE REVIEWS MICROBIOLOGY, VOLUME 10, 265, APRIL 2012
    (2). Birgit Klinkert and Franz Narberhaus.  Microbial thermosensors.  Cell. Mol. Life Sci.  (2009) 66:2661–2676
    (3). Miyo Terao Morita, Yoshiyuki Tanaka, Takashi S. Kodama, Yoshimasa Kyogoku,
    Hideki Yanagi and Takashi Yura.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor..  Genes Dev. 1999 13: 655-665
    (4). David H. Mathews.  Revolutions in RNA Secondary Structure Prediction.  J. Mol. Biol. (2006) 359, 526–532
    (5). David H Mathews and Douglas H Turner.  Prediction of RNA secondary structure by free energy minimization.  Current Opinion in Structural Biology 2006, 16:270–278
    (6). J. S. McCASKlLL.  The Equilibrium Partition Function and Base Pair Binding Probabilities for RNA Secondary Structure.  Biopolymers, Vol. 29,1105-1119 (1990)
    (7). http://www.tbi.univie.ac.at/~ivo/RNA/
    (8). http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html
    (9). L. Hofacker, W. Fontan.  Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie , 125, 167-188.
    (10). In-Line Probing Analysis of Riboswitches.Elizabeth E.  Regulski and Ronald R. Breaker.  NATURE PROTOCOL EXCHANGE http://www.nature.com/protocolexchange/protocols/1889

     

    Acknowledgement

    Thank Prof. CHEN Guoqiang, Prof. SUN Zhirong and Prof. DAI Junbiao for their guidance in the project.  Thank Prof. Tom Kellie for his revision of the PPT and the report.  Thanks Dr. YIN Ping and Dr. QU Peng for their help in the RNA experiments.  Thanks FU Xiaozhi and LI Teng for their help in the molecular biology experiments.