Team:LMU-Munich/Bacillus Introduction

From 2012.igem.org

(Difference between revisions)
Line 50: Line 50:
<br>
<br>
-
<p align="justify"> In general, bacteria can be divided into two major groups that differ primarily in their cell envelope: gram-positive and gram-negative. ''E. coli'' is the model organism for the gram-negative bacteria. A model organism for the gram-positive bacteria is ''B. subtilis'', our favourite pet. The natural habitat of ''B. subtilis'' is the soil, so it is forced to adapt to numerous environmental changes. Accordingly, ''B. subtilis'' is characterized by quick and cunning reflexes and a complex lifestyle. There are many differentiations and survival strategies that ''B. subtilis'' can engage (Fig. 1): Due to its natural competence, it can take up exogenous DNA and integrate it into its genome. To be flexibel to the environment and move towards nutrients or avoid toxic compounds, it is motile with the aid of its peritrichous flagella. If starved some cells even become cannibals that feast on their siblings. If the conditions get too bad for survival, ''B. subtilis'' can form endospores. These are very dormant and highly stable stages that are resistent against e.g. desiccation, UV light, heat and pressure. Once these spores encounter better conditions they are able to germinate again. See this [https://2012.igem.org/Team:LMU-Munich/Germination_Stop#How_do_Sporulation_&_Germination_Work? section] for Details.</p>
+
<p align="justify"> In general, bacteria can be divided into two major groups that differ primarily in their cell envelope: gram-positive and gram-negative. ''E. coli'' is the model organism for the gram-negative bacteria. A model organism for the gram-positive bacteria is ''B. subtilis'', our favourite pet. The natural habitat of ''B. subtilis'' is the soil, so it is forced to adapt to numerous environmental changes. Accordingly, ''B. subtilis'' is characterized by quick and cunning reflexes and a complex lifestyle. There are many differentiations and survival strategies that ''B. subtilis'' can engage (Fig. 1): Due to its natural competence, it can take up exogenous DNA and integrate it into its genome. To be flexibel to the environment and move towards nutrients or avoid toxic compounds, it is motile with the aid of its peritrichous flagella. If starved some cells even become cannibals that feast on their siblings. If the conditions get too bad for survival, ''B. subtilis'' can form endospores. These are very dormant and highly stable stages that are resistent against e.g. desiccation, UV light, heat and pressure. Once these spores encounter better conditions they are able to germinate again. See this [https://2012.igem.org/Team:LMU-Munich/Germination_Stop section] for Details on germination.</p>
Line 72: Line 72:
<br>
<br>
'''1) Transformation of ''B. subtilis'''''  
'''1) Transformation of ''B. subtilis'''''  
-
<br>As ''B. subtilis'' and ''E. coli'' are model organisms, they have established genetics. The advantage of ''B. subtilis'' is that it is naturally competent. So it is very easy to conduct genetic manipulations. It can replicate plasmids as ''E. coli'' does, but there is a much more elegant way of bringing in exogenous DNA fragments. When flanked by regions homologous to the ''B. subtilis'' genome, it will be integrated at high efficiency via homologous recombination at this locus and subsequently be replicated with the chromosome (Fig. 2). This leads to stable, single-copy genomic alterations. Thereby avoiding, copy-number artifacts occuring with replicative plasmids. This different way of genetic manipulations requires the use of integrative vectors as provided by our [https://2012.igem.org/Team:LMU-Munich/Bacillus_BioBricks BacillusBioBrickBox]. For this reason, ''B. subtilis'' is an ideal genetic platform for Synthetic Bioloy. But so far very few iGEM teams have worked with this model organism due to the lack of suitable BioBrick-compatible genetic tools.</p>
+
<br>As ''B. subtilis'' and ''E. coli'' are model organisms, they have established genetics. The advantage of ''B. subtilis'' is that it is naturally competent. So it is very easy to conduct genetic manipulations. It can replicate plasmids as ''E. coli'' does, but there is a much more elegant way of bringing in exogenous DNA fragments. When flanked by regions homologous to the ''B. subtilis'' genome, it will be integrated at high efficiency via homologous recombination at this locus and subsequently be replicated with the chromosome (Fig. 2). This leads to stable, single-copy genomic alterations. Thereby avoiding, copy-number artifacts occuring with replicative plasmids. This different way of genetic manipulations requires the use of integrative vectors as provided by our [https://2012.igem.org/Team:LMU-Munich/Bacillus_BioBricks BacillusBioBrickBox]. For this reason, ''B. subtilis'' is an ideal genetic platform for Synthetic Bioloy. But so far, very few iGEM teams have worked with this model organism due to the lack of suitable BioBrick-compatible genetic tools.</p>
<br>
<br>
<br>
<br>
Line 98: Line 98:
<br>
<br>
'''2) Differentiation'''
'''2) Differentiation'''
-
<p align="justify">''B. subtilis'' is able to differentiate into cells with different morphologies and functions (Fig. 1 and Fig. 3). The most characteristic form is the endospore, which is produced under nutrient starvation. In our project, we will exploit the production of endospores. Because they are extremely stable, they are perfect vehicles for the display of functional fusion proteins on their surface as illustrated by our '''Sporo'''bead module.
+
<p align="justify">''B. subtilis'' is able to differentiate into cells with different morphologies and functions (Fig. 1 and Fig. 3). The most characteristic form is the endospore, which is produced under nutrient starvation. In our project, we will exploit the production of endospores. Because they are extremely stable, they are perfect vehicles for the display of functional fusion proteins on their surface as illustrated by our [https://2012.igem.org/Team:LMU-Munich/Spore_Coat_Proteins '''Sporo'''bead] module.
<br>
<br>
</p>
</p>
Line 126: Line 126:
|[[File:BacillusBioBrickBox.png|100px|link=Team:LMU-Munich/Bacillus_BioBricks]]
|[[File:BacillusBioBrickBox.png|100px|link=Team:LMU-Munich/Bacillus_BioBricks]]
|[[File:SporeCoat.png|100px|link=Team:LMU-Munich/Spore_Coat_Proteins]]
|[[File:SporeCoat.png|100px|link=Team:LMU-Munich/Spore_Coat_Proteins]]
-
|[[File:TerminationSTOP.png|100px|link=Team:LMU-Munich/Germination_Stop]]
+
|[[File:GerminationSTOP.png|100px|link=Team:LMU-Munich/Germination_Stop]]
|-
|-
|[[Team:LMU-Munich/Bacillus_Introduction|<font size="2">'''''Bacillus'''''<BR>Intro</font>]]
|[[Team:LMU-Munich/Bacillus_Introduction|<font size="2">'''''Bacillus'''''<BR>Intro</font>]]

Revision as of 00:08, 27 September 2012

iGEM Ludwig-Maximilians-Universität München Beadzillus

Bacillus in urban culture.jpg

The LMU-Munich team is exuberantly happy about the great success at the World Championship Jamboree in Boston. Our project Beadzillus finished 4th and won the prize for the "Best Wiki" (with Slovenia) and "Best New Application Project".

IGEM HQ LMU prize.jpg

[ more news ]

Sporenfreunde