Team:Exeter/Project

From 2012.igem.org

(Difference between revisions)
(Prototype team page)
(Overall project)
 
(2 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
 
-
 
-
<html>
 
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
 
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
 
-
This is a template page. READ THESE INSTRUCTIONS.
 
-
</div>
 
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
 
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2008.igem.org/Help:Template/Examples">HERE</a>.
 
-
</div>
 
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
 
-
You <strong>MUST</strong> have all of the pages listed in the menu below with the names specified.  PLEASE keep all of your pages within your teams namespace. 
 
-
</div>
 
-
</div>
 
-
</html>
 
-
 
-
<!-- *** End of the alert box *** -->
 
-
 
-
 
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
!align="center"|[[Team:Exeter|Home]]
!align="center"|[[Team:Exeter|Home]]
Line 35: Line 16:
== '''Overall project''' ==
== '''Overall project''' ==
-
Tell us more about your project. Give us background. Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs)
+
<big><i>Our project abstract:</i><small> Our aim is to design a system for the bespoke synthesis of polysaccharides in Escherichia coli (E. coli). Our objectives are two-fold, 1. to engineer E. coli to synthesise novel polysaccharide(s) designed by us, and 2. to construct an engineered plasmid which will allow the differential expression of enzymes, producing the polysaccharides chosen depending on the stimulus of particular promoters; this grants a controlled external selection mechanism to the polysaccharide production of the cell. Furthermore we are developing software tools to facilitate the selection of polysaccharide synthesising enzymes and are proposing a new, rapid design-model-analysis workflow for polysaccharide characteristisation and exploitation.<br><br>
-
 
+
 +
The ultimate goal of this engineering process is to demonstrate the production of desired polysaccharides and to provide a mechanism by which polysaccharides can be produced 'to order'. The applications for this are enormous, for example, vaccines could be produced at speed and material scientists and engineers would be able to choose a synthetic polysaccharide fulfilling desired properties.<br><br>
 +
<big><i>Why did we choose the project?</i><small><br><br>
 +
Novel Polysaccharide Synthesis will revolutionise the way we can design <i>intelligent materials</i>. Nature goes to a lot of trouble to synthesise specific sugars to regulate cellular properties (e.g. osmotic pressures). We are synthetically bridging the gap between natures fine design of polysaccharide based materials to what we can humanly achieve. We are proposing a mechanism by which we may fine tune adjustments to polysaccharide structures to influence the macro properties of a certain sugar.<br><br>
 +
 +
Is being able to synthesise such precise polysaccharides important? Indeed! To name just a few of the novel applications; by changing chain length of polymers we can design special viscous liquids for non-drip paint, we could tune a specific cartilaginous polysaccharide for lubricants, rapid/safe vaccines could be produced from a database of designer sugars.<br><br>
 +
By forming a method of synthesising sugar chains in this manner, there is a possible myriad of presently inconceivable applications due to the wealth of new sugars, previously unseen in nature, which we would offer. Thus allowing for the basis of a completely unique <i>designers toolkit</i>.<br><br>
 +
We will create a database of well characterised glycosyltransferases. We envisage the design of a synthetic E. coli containing this information which, providing a system relating glycosyltransferases to certain output sugars, would be a factory of designer sugars. A final aim would be to link such a system to output specific ‘material properties’ for the E. coli to produce.<br><br>
 +
Our system is at the forefront of emerging technologies and it has potential to work efficiently because we are playing by the same rules as nature. The design, biological, engineering and medicinal uses are limitless which is why our project is exciting for such a range of people.
== Project Details==
== Project Details==

Latest revision as of 14:28, 29 June 2012

Home Team Official Team Profile Project Parts Submitted to the Registry Modeling Notebook Safety Attributions



Contents

Overall project

Our project abstract: Our aim is to design a system for the bespoke synthesis of polysaccharides in Escherichia coli (E. coli). Our objectives are two-fold, 1. to engineer E. coli to synthesise novel polysaccharide(s) designed by us, and 2. to construct an engineered plasmid which will allow the differential expression of enzymes, producing the polysaccharides chosen depending on the stimulus of particular promoters; this grants a controlled external selection mechanism to the polysaccharide production of the cell. Furthermore we are developing software tools to facilitate the selection of polysaccharide synthesising enzymes and are proposing a new, rapid design-model-analysis workflow for polysaccharide characteristisation and exploitation.

The ultimate goal of this engineering process is to demonstrate the production of desired polysaccharides and to provide a mechanism by which polysaccharides can be produced 'to order'. The applications for this are enormous, for example, vaccines could be produced at speed and material scientists and engineers would be able to choose a synthetic polysaccharide fulfilling desired properties.

Why did we choose the project?

Novel Polysaccharide Synthesis will revolutionise the way we can design intelligent materials. Nature goes to a lot of trouble to synthesise specific sugars to regulate cellular properties (e.g. osmotic pressures). We are synthetically bridging the gap between natures fine design of polysaccharide based materials to what we can humanly achieve. We are proposing a mechanism by which we may fine tune adjustments to polysaccharide structures to influence the macro properties of a certain sugar.

Is being able to synthesise such precise polysaccharides important? Indeed! To name just a few of the novel applications; by changing chain length of polymers we can design special viscous liquids for non-drip paint, we could tune a specific cartilaginous polysaccharide for lubricants, rapid/safe vaccines could be produced from a database of designer sugars.

By forming a method of synthesising sugar chains in this manner, there is a possible myriad of presently inconceivable applications due to the wealth of new sugars, previously unseen in nature, which we would offer. Thus allowing for the basis of a completely unique designers toolkit.

We will create a database of well characterised glycosyltransferases. We envisage the design of a synthetic E. coli containing this information which, providing a system relating glycosyltransferases to certain output sugars, would be a factory of designer sugars. A final aim would be to link such a system to output specific ‘material properties’ for the E. coli to produce.

Our system is at the forefront of emerging technologies and it has potential to work efficiently because we are playing by the same rules as nature. The design, biological, engineering and medicinal uses are limitless which is why our project is exciting for such a range of people.

Project Details

Part 2

The Experiments

Part 3

== Results ==