Team:USP-UNESP-Brazil/Associative Memory/Modeling
From 2012.igem.org
Line 20: | Line 20: | ||
\begin{align} | \begin{align} | ||
- | \frac{d}{dt}N_{Ad} &= r(N_{Ad}+N_{Au})\Big[1 - \frac{(N_{Ad}+N_{Au})}{K}\Big] - \alpha_A A N_{Ad} + (\beta_A + \phi_B B)N_{Au} | + | \frac{d}{dt}N_{Ad} &= r(N_{Ad}+N_{Au})\Big[1 - \frac{(N_{Ad}+N_{Au})}{K}\Big] - \alpha_A A N_{Ad} + (\beta_A + \phi_B B)N_{Au} \\ |
- | \frac{d}{dt}N_{Bd} &= r(N_{Bd}+N_{Bu})\Big[1 - \frac{(N_{Bd}+N_{Bu})}{K}\Big] - \alpha_B A N_{Bd} + (\beta_B + \phi_A A)N_{Bu} | + | \frac{d}{dt}N_{Bd} &= r(N_{Bd}+N_{Bu})\Big[1 - \frac{(N_{Bd}+N_{Bu})}{K}\Big] - \alpha_B A N_{Bd} + (\beta_B + \phi_A A)N_{Bu} \\ |
\frac{d}{dt}N_{Au} &= \alpha_A A N_{Ad} - \beta_A N_{Au} - \phi_B B N_{Au}\\ | \frac{d}{dt}N_{Au} &= \alpha_A A N_{Ad} - \beta_A N_{Au} - \phi_B B N_{Au}\\ | ||
\frac{d}{dt}N_{Bu} &= \alpha_B B N_{Bd} - \beta_B N_{Bu} - \phi_A A N_{Bu} \\ | \frac{d}{dt}N_{Bu} &= \alpha_B B N_{Bd} - \beta_B N_{Bu} - \phi_A A N_{Bu} \\ | ||
\frac{d}{dt}A &= \kappa_{Au} N_{Au} + \kappa_{Ad} N_{Ad} - \alpha_A A N_{Ad} - \lambda_A A - \phi_A A N_{Bu} \\ | \frac{d}{dt}A &= \kappa_{Au} N_{Au} + \kappa_{Ad} N_{Ad} - \alpha_A A N_{Ad} - \lambda_A A - \phi_A A N_{Bu} \\ | ||
\frac{d}{dt}B &= \kappa_{Bu} N_{Bu} + \kappa_{Bd} N_{Bd} - \alpha_B B N_{Bd} - \lambda_B B - \phi_B B N_{Au} | \frac{d}{dt}B &= \kappa_{Bu} N_{Bu} + \kappa_{Bd} N_{Bd} - \alpha_B B N_{Bd} - \lambda_B B - \phi_B B N_{Au} | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | \begin{align} | ||
+ | &-\alpha_A A N_{Ad} + \beta_A N_{Au} + \phi_B B N_{Au} = 0 \\ | ||
+ | &\kappa_{Au} N_{Au} + \kappa_{Ad} N_{Ad} - \alpha_A A N_{Ad} - \lambda_A A - \phi_A A N_{Bu} = 0 \\ | ||
+ | &-\alpha_B B N_{Bd} + \beta_B N_{Bu} + \phi_A A N_{Bu} = 0 \\ | ||
+ | &\kappa_{Bu} N_{Bu} + \kappa_{Bd} N_{Bd} - \alpha_B B N_{Bd} - \lambda_B B - \phi_B B N_{Au} = 0 \\ | ||
+ | &N_{Au} + N_{Ad} = K \\ | ||
+ | &N_{Bu} + N_{Bd} = K | ||
\end{align} | \end{align} | ||
Revision as of 17:07, 26 September 2012
Network
\begin{align} \frac{d}{dt} N_{d} &= r(N_{d}+N_{u})\Big[1 - \frac{(N_{d}+N_{u})}{K}\Big] - \alpha A N_{d} + \beta N_{u} \\ \frac{d}{dt} N_{u} &= \alpha A N_{1d} - \beta N_{u} \\ \frac{d}{dt} A &= \kappa_{u} N_{u} + \kappa_{d} N_{d} - \alpha A N_{d} - \lambda A \end{align}
\begin{align} \frac{d}{dt}N_{Ad} &= r(N_{Ad}+N_{Au})\Big[1 - \frac{(N_{Ad}+N_{Au})}{K}\Big] - \alpha_A A N_{Ad} + (\beta_A + \phi_B B)N_{Au} \\ \frac{d}{dt}N_{Bd} &= r(N_{Bd}+N_{Bu})\Big[1 - \frac{(N_{Bd}+N_{Bu})}{K}\Big] - \alpha_B A N_{Bd} + (\beta_B + \phi_A A)N_{Bu} \\ \frac{d}{dt}N_{Au} &= \alpha_A A N_{Ad} - \beta_A N_{Au} - \phi_B B N_{Au}\\ \frac{d}{dt}N_{Bu} &= \alpha_B B N_{Bd} - \beta_B N_{Bu} - \phi_A A N_{Bu} \\ \frac{d}{dt}A &= \kappa_{Au} N_{Au} + \kappa_{Ad} N_{Ad} - \alpha_A A N_{Ad} - \lambda_A A - \phi_A A N_{Bu} \\ \frac{d}{dt}B &= \kappa_{Bu} N_{Bu} + \kappa_{Bd} N_{Bd} - \alpha_B B N_{Bd} - \lambda_B B - \phi_B B N_{Au} \end{align}
\begin{align}
&-\alpha_A A N_{Ad} + \beta_A N_{Au} + \phi_B B N_{Au} = 0 \\
&\kappa_{Au} N_{Au} + \kappa_{Ad} N_{Ad} - \alpha_A A N_{Ad} - \lambda_A A - \phi_A A N_{Bu} = 0 \\
&-\alpha_B B N_{Bd} + \beta_B N_{Bu} + \phi_A A N_{Bu} = 0 \\
&\kappa_{Bu} N_{Bu} + \kappa_{Bd} N_{Bd} - \alpha_B B N_{Bd} - \lambda_B B - \phi_B B N_{Au} = 0 \\
&N_{Au} + N_{Ad} = K \\
&N_{Bu} + N_{Bd} = K
\end{align}
[1] J. P. Ward, J.R. King, A. J. Koerber, P. Williams, J. M. Croft and R. E. Sockett Mathematical modelling of quorum sensing in bacteria. Math Med Biol (2001) 18(3)
[2] http://partsregistry.org/