Safety

From 2012.igem.org

(Difference between revisions)
(1. Would any of your project ideas raise safety issues in terms of:)
(1. Would any of your project ideas raise safety issues in terms of:)
Line 91: Line 91:
====1. Would any of your project ideas raise safety issues in terms of:====
====1. Would any of your project ideas raise safety issues in terms of:====
'''*Researcher safety''' <br>
'''*Researcher safety''' <br>
-
The University of Westminster have a full range of safety documents relating to all laboratory safety issues. Protocols range from the appropriate behaviour in the laboratory to the correct procedure for handling spills. In the three floors where the laboratories are located, by policy it is not allowed to consume any food or drinks as a safety measure. All laboratory users are required to use protective equipment when working in the laboratory, such as laboratory coats, eye protection and gloves, and laboratories are subject to on-the spot inspections to ensure that the policies laid out by the University are being adhered to.
+
Biological sciences are a great tool for innovation and improvement of human society; nevertheless when the biosafety parameters are ignored, this area of research can become quite dangerous. We always have that idea present while working at the laboratory. We follow the rules stated at the Good Laboratory Practice (GLP) and according to the safety guidelines established by the Instituto de Fisiología Celular (IFC), part of the Universidad Nacional Autónoma de México (UNAM). We also have been working under the statutes of the Mexican official law (published in 2005) and guidelines (published in 2008 and reformed in 2009) about biosafety regarding genetically modified organisms, both available in the Mexican Government web site. Furthermore, we work under the guidance of Soledad Funes, PhD, who is always ready to solve any doubts we have regarding the disposal of biological and non-biological wastes.
-
 
+
The materials used throughout the project do not pose any safety or health risk neither to the team members nor to the rest of the members of the lab. For the development of this project, we have looked for those materials and reagents which would represent the least risk for ourselves, others and the environment. We understand, however, that when used in the wrong concentrations or without the proper care, some of the solutions, buffers and materials can be potentially harmful. In order to avoid any possible harm or injury, during every lab work session, all the team members always use gloves and white cotton laboratory coat as basic protection, and each time they start working or finish any experiment, common basic material, like micropipettes, UV transilluminator, analytical balance, used reagents, timers, glass ware and the lab bench, is cleaned superficially with water and/or ethanol 70%, to assure avoidance of any health risks to lab members as well to prevent cross-contamination among other experiments.
-
All potentially hazardous materials are documented in COSHH forms (Microbial and Chemical) which the iGEM team are required to complete themselves. These COSHH forms are prominently displayed in the laboratory and are always carried with the researchers. We are using the DH5α strain of E. coli for amplification of our plasmids. This is a well-studied laboratory strain and is classed as Level 1.
+
-
 
+
-
All our experimental work is in the mammalian cell lines, MG63 and MCF7. MG63 is an osteosarcoma cell line (Level1) and MCF7 is a well characterised breast cancer cell commonly used as a tumor model system. Any risk due to contamination (bacterial, viral, prion) will be taken care of by following approved disposal protocols. Standard mammalian cell culture techniques are designed to minimise the risks of such contamination affecting users. Furthermore a strict- No White Lab Coats policy is in place when entering the mammalian cell culture laboratory.
+
-
 
+
-
All BioBrick parts created and used are non-hazardous as none of them produce toxic levels of substances. The parts we are producing are mammalian promoter sequences. They are amplified from the mammalian cell line, HeLa. Promoters produced are ALDH1A1, ALDH1A3, ALDH2 and ALDH3A1. None of these are harmful. Doxycycline-induced mammalian promoter is amplified from a plasmid and does not produce harmful products.
+
'''*Public Safety''' <br>
'''*Public Safety''' <br>
-
The study is a proof of concept. Risk to public is minimal. The laboratory is kept locked when not in use. Mammalian cell culture laboratory adjoins our main working laboratory and is also locked. None of our transformants produce products which would be toxic to humans. DH5α is a laboratory strain and not associated with disease in healthy humans. Although bacteria would be transformed to have antibiotic resistance, it is not a strain which is able to thrive outside the laboratory. The mammalian cell lines used pose minimal risk to the public as do the products which they express.
+
The materials and reagents used also do not represent any safety or health risk to the general public. It is important to stress that, like any other institutional research center, the access to the building is restricted and controlled, so general public entrance is not allowed, as well to children and suspect persons. With this measure, the possibility of accidents and malicious misuse of our experimental material by other individuals or groups is reduced.
'''*Environmental Safety''' <br>
'''*Environmental Safety''' <br>
-
DH5α is a genetically engineered lab strain which does not transfer genes and therefore poses minimal risk of transferring antibiotic resistance to other bacteria. The mammalian cells would not survive for extended periods outside the laboratory and therefore is of minimal risk.
+
Furthermore, they also do not pose any risk to the general public or to the environmental quality when released. During the development of our project, it is of outmost importance to consider the management and destination of the dangerous and toxic reagents, genetically modified organisms and other substances that may pose a threat to the environment and/or living beings. In the experiments we are performing, the presence of dangerous reagents is limited and therefore buffers and other non-biological reagents can be easily disposed. As common practice, strong acids and bases are neutralized before disposal, and other reagents are disposed according to the manufacturer recommendations and to local and institutional laws and regulations. All the used plastic material (like pipette tips, eppendorf tubes, etc.) is disposed into a special container and afterwards incinerated.
====2. Do any of the new BioBrick parts (or devices) that you made this year raise safety issues? If yes, ====
====2. Do any of the new BioBrick parts (or devices) that you made this year raise safety issues? If yes, ====

Revision as of 23:51, 7 September 2012

Safety

Before answering these questions on your team Safety page, be sure to read the Safety in iGEM page. and the FAQ section below.

Key questions

For iGEM 2012, teams are asked to detail how they approached any issues of biological safety associated with their projects. Specifically, teams should consider the following questions:

  1. Would any of your project ideas raise safety issues in terms of:
    • researcher safety,
    • public safety, or
    • environmental safety?
  2. Do any of the new BioBrick parts (or devices) that you made this year raise any safety issues? If yes,
    • did you document these issues in the Registry?
    • how did you manage to handle the safety issue?
    • How could other teams learn from your experience?
  3. Is there a local biosafety group, committee, or review board at your institution?
    • If yes, what does your local biosafety group think about your project?
    • If no, which specific biosafety rules or guidelines do you have to consider in your country?
  4. Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices and systems be made even safer through biosafety engineering?

 

Teams, please document any answers to these safety questions on your wiki safety page. Judges will be asked to evaluate your project, in part, on the basis of if and how you considered and addressed issues of biological safety. If any questions arise regarding iGEM and biological safety please send an email to safety AT igem.org.


Contents

1. Would any of your project ideas raise safety issues in terms of:

*Researcher safety
Biological sciences are a great tool for innovation and improvement of human society; nevertheless when the biosafety parameters are ignored, this area of research can become quite dangerous. We always have that idea present while working at the laboratory. We follow the rules stated at the Good Laboratory Practice (GLP) and according to the safety guidelines established by the Instituto de Fisiología Celular (IFC), part of the Universidad Nacional Autónoma de México (UNAM). We also have been working under the statutes of the Mexican official law (published in 2005) and guidelines (published in 2008 and reformed in 2009) about biosafety regarding genetically modified organisms, both available in the Mexican Government web site. Furthermore, we work under the guidance of Soledad Funes, PhD, who is always ready to solve any doubts we have regarding the disposal of biological and non-biological wastes. The materials used throughout the project do not pose any safety or health risk neither to the team members nor to the rest of the members of the lab. For the development of this project, we have looked for those materials and reagents which would represent the least risk for ourselves, others and the environment. We understand, however, that when used in the wrong concentrations or without the proper care, some of the solutions, buffers and materials can be potentially harmful. In order to avoid any possible harm or injury, during every lab work session, all the team members always use gloves and white cotton laboratory coat as basic protection, and each time they start working or finish any experiment, common basic material, like micropipettes, UV transilluminator, analytical balance, used reagents, timers, glass ware and the lab bench, is cleaned superficially with water and/or ethanol 70%, to assure avoidance of any health risks to lab members as well to prevent cross-contamination among other experiments.

*Public Safety
The materials and reagents used also do not represent any safety or health risk to the general public. It is important to stress that, like any other institutional research center, the access to the building is restricted and controlled, so general public entrance is not allowed, as well to children and suspect persons. With this measure, the possibility of accidents and malicious misuse of our experimental material by other individuals or groups is reduced.

*Environmental Safety
Furthermore, they also do not pose any risk to the general public or to the environmental quality when released. During the development of our project, it is of outmost importance to consider the management and destination of the dangerous and toxic reagents, genetically modified organisms and other substances that may pose a threat to the environment and/or living beings. In the experiments we are performing, the presence of dangerous reagents is limited and therefore buffers and other non-biological reagents can be easily disposed. As common practice, strong acids and bases are neutralized before disposal, and other reagents are disposed according to the manufacturer recommendations and to local and institutional laws and regulations. All the used plastic material (like pipette tips, eppendorf tubes, etc.) is disposed into a special container and afterwards incinerated.

2. Do any of the new BioBrick parts (or devices) that you made this year raise safety issues? If yes,

No. The parts produced by our group have all been promoter BioBrick parts and they do not raise any safety issues.

3. Is there a local biosafety group, committee, or review board at your institution?

Yes, University of Westminster has a GM safety officer. The project was cleared as Containment Level 1. An ethics filter form was filled before the start of the project. All the chemicals and other materials used for the project are approved for laboratory use.


4. Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices and systems be made even safer through biosafety engineering?

Yes, University of Westminster has a GM safety officer. The project was cleared as Containment Level 1. An ethics filter form was filled before the start of the project. All the chemicals and other materials used for the project are approved for laboratory use.

Retrieved from "http://2012.igem.org/Safety"