## Notebook

Plasmid transformation:

The basic information and number of the biobricks we use from iGEM registry are showed in

the below table:

| Part    | Structure                                     | Length  | Number |
|---------|-----------------------------------------------|---------|--------|
| 10462   | B0034 C0062 B0010 B0012                       | 936bp   | 1080A  |
| R0062   | -35 R0062 -10 -10                             | 55bp    | 106OA  |
| C0261   | B0034 C0061                                   | 661bp   | 114CA  |
| J23100  |                                               | 35bp    | 118CA  |
| K561001 | vgb promoter                                  | 135bp   | 523CC  |
| R0051   | OR2 OR1 OR1                                   | 49bp    | 106KA  |
| P0151   | B0031 C0051 B0010 B0012                       | 932bp   | 110CA  |
| Q04121  | lacl lacl+pL<br>B0034 C0012 B0010 B0012 R0011 | 1370bp  | 120PK  |
| B0030   | B0030<br>RBS-1Strong<br>RBS                   | 15bp    | 101HA  |
| C0062   | C0062 prefix IuxR T A                         | • 756bp | 104OA  |
| K081010 | J23100 B0030 C0040                            | 749bp   | 210PA  |
| R0040   | TetR 1 -35 R0040                              | 54bp    | 106IA  |
| B0034   |                                               | 12bp    | 102MA  |
| B0015   | B0010 B0012                                   | 129bp   | 123LAK |
| K515102 | J23100 K515002                                | 1759bp  | 501EC  |
|         | PA2652<br>RBS<br>insulator                    |         |        |

| K561002 | K387003 B0034 E1010 B0034 C0040 B0010 B0012 | 1679bp | 523AC         |
|---------|---------------------------------------------|--------|---------------|
| P0412   | B0034 C0012 B0010 B0012                     | 1308bp | 306PA         |
| J04500  | Lacl<br>R0010 B0034                         | 220bp  | 412AAK        |
| J04450  | Lacl mRFP1<br>R0010 B0034 E1010 B0015       | 2070bp | 103AC(pSB1C3) |
|         |                                             | 2204bp | 105AK(pSB1K3) |

We transform these plasmids with standardized genes in batch, and change the schedule according to the following experiments.

3<sup>rd</sup> Jul: transform the first batch of plasmids, including 13 ones: 101HA, 102MA, 104OA,

106IA, 106KA, 106OA, 108OA, 110CA, 114CA, 118CA, 120PK, 123LAK, 210PA

4<sup>th</sup> Jul: select 5 monoclonal bacteria for each gene

13<sup>th</sup> Jul: transform plasmid 120PK

15<sup>th</sup> Jul: transform plasmid 501EC, 523AC, and 523CC

16<sup>th</sup> Jul: select 10 monoclonal bacteria for 501EC, 10 for 523AC, and 5 for 523CC

 $4^{\rm th}$  Aug: transform plasmid 103AC and 105AK, without coating plates

 $8^{th}$  Aug: transform plasmid 306PA and 412AAK, without coating plates

10<sup>th</sup> Aug: transform plasmid 314EAK, without coating plates



5<sup>th</sup> Jul: cultivate 106OA, 110CA, 114CA and 123AK in LB medium

6<sup>th</sup> Jul: extract the plasmids; use enzymes to digest 106OA(S & P), 110CA(X & P), 114CA

(E & S), 123LAK (E & X) in 37°C for 2 hours; extract the fragments;

ligation the purified fragments with T4 DNA lingase over night

7<sup>th</sup> Jul: transform pR-cl and LuxI-Ter

8<sup>th</sup> Jul: there is only one bacterium on the plate of LB with Amp; we find lawn on the plate of LuxI-Ter; then pick up the lawn, cultivate pR-cI in LB medium

 $9^{th}$  Jul: extract plasmids of pR-cl; use X&P enzyme digestion to detect and the result is positive; transform LuxI-Ter again

10<sup>th</sup> Jul: there is still lawn on the plate of LuxI-Ter, no monoclonal bacteria; cultivate the transformed products of LuxI-Ter in LB medium

11<sup>th</sup> Jul: cultivate LuxI-Ter in LB medium; detect plasmids by electrophoresis and it shows single and bright stripe; transform plasmids

12<sup>th</sup> Jul: lawn on the plate of LuxI-Ter again

13<sup>th</sup> Jul: relink LuxI-Ter at 16°C for 2h; transform it and cultivate it in LB medium

14<sup>th</sup> Jul: extract plasmids and detect it. It shows a single stripe

5<sup>th</sup> Aug: cultivate 114CA and 123LAK in LB medium

 $6^{th}$  Aug: extract the plasmids; use enzymes to digest 114CA (E & S) and 123LAK (E & X) at 37°C for 2h; extract 114CA; dispose 123LAK at 80°C for 15min

7<sup>th</sup> Aug: transform LuxI-Ter and cultivate it in LB medium

9<sup>th</sup> Aug: extract the plasmids and detect them by electrophoresis

13<sup>th</sup> Aug: transform plasmids of LuxI-Ter

 $14^{th}$  Aug: select 9 bacteria of LuxI-cI and detect the bacteria solution by PCR; cultivate LUxI-Ter1, 2, 3 in LB medium

15<sup>th</sup> Aug: extract plasmids and detect it by PCR; transform them again

16<sup>th</sup> Aug: select 6 bacteria of LuxI-Ter and cultivate them in LB medium

 $17^{th}$  Aug: extract the plasmids and detect them by electrophoresis; use enzymes to digest LuxI-Ter(E&P) at  $37\,^\circ\!\!C$  overnight

18  $^{th}$  Aug: extract the gel; link LuxI-Ter with pSB1C3 and transform this at 16  $^\circ\!\!C$   $\,$  for 2h  $\,$ 

19<sup>th</sup> Aug: no bacteria

1<sup>st</sup> Sep: use enzymes to digest LuxI-Ter

2<sup>nd</sup> Sep: gel-extract LuxI-Ter and link it to pSB1C3; transform it

3<sup>rd</sup> Sep: only one bacterium; select it

17<sup>th</sup> Sep: deliver it to company to sequence it

R-CcdB-T



5<sup>th</sup> Jul: steak on the plate of pEntr-3C

6<sup>th</sup> Jul: select monoclonal bacterium to cultivate in LB medium

7<sup>th</sup> Jul: extract plasmids and amplify gene CcdB

Program

| <b>94</b> ℃ | 5min     |             |
|-------------|----------|-------------|
| <b>94</b> ℃ | 30s      | Г           |
| 54℃         | 30s      | - 32 cycles |
| 72℃         | 25s      |             |
| 72℃         | 5min     |             |
| 4℃          | $\infty$ |             |
|             |          |             |

Extract gel and standardize gene CcdB by standard primer EX-Standard-F/SP-Standard-R Extract gel and link it to carrier pMD18-T

Links' system

pMD18-T 0.5ul CcdB fragment 8ul Solution I 1.5ul

8<sup>th</sup> Jul: transform

9<sup>th</sup> Jul: select monoclonal bacteria and detect its liquid by PCR. One of the results is positive 10<sup>th</sup> Jul: deliver T-CcdB2 to sequence it

12<sup>th</sup> Jul: cultivate it in LB medium

 $13^{\rm th}$  Jul: extract plasmids; use enzymes to digest it and extract gel; link CcdB and 123LAK; transform

14<sup>th</sup> Jul: after it grows into lawn, cultivate the transformed solution in LB medium

15<sup>th</sup> Jul: detect the solution by PCR but it shows no specific stripe; transform again

16<sup>th</sup> Jul: it still grows into lawn

5<sup>th</sup> Aug: cultivate T-CcdB2 and 123LAK in LB medium

 $6^{th}$  Aug: extract plasmids and digest them by enzymes; extract CcdB gel; dispose 123LAK in  $80^\circ\!C$  for 15min

 $\textbf{7}^{\text{th}}$  Aug: transform CcdB-Ter and cultivate the solution in LB medium

 $9^{\rm th}$  Aug: extract plasmids and detect them with electrophoresis; cultivate 102MA in LB medium

 $11^{th}$  Aug: extract plasmids and cut them with enzymes; extract gel; link CcdB and 102MA to become R-CcdB

12<sup>th</sup> Aug: transform R-CcdB and cultivate it in LB medium

 $13^{\rm th}$  Aug: extract R-CcdB and detect it by electrophoresis; transform plasmid and cultivate it in LB medium

14<sup>th</sup> Aug: coat plate

15<sup>th</sup> Aug: select 8 bacteria

16<sup>th</sup> Aug: detect solution by PCR

17<sup>th</sup> Aug: detect solution by PCR and No.3 and No.8 are positive

19<sup>th</sup> Aug: R-CcdB8 is not well prepared; extract plasmids and digest it with enzymes; extract gel and link R-CcdB3+123LAK overnight

20<sup>th</sup> Aug: transform and coat plate

21<sup>st</sup> Aug: select 2 bacteria

22<sup>nd</sup> Aug: cultivate R-CcdB-T1 and R-CcdB-T2 in LB medium

 $23^{rd}$  Aug: R-CcdB-T2 is not well prepared; extract plasmids of R-CcdB-T1 and detect it by enzyme digestion

3<sup>rd</sup> Sep: extract plasmid, digest (E&P), purify except CcdB-Ter, link to pSB1C3, pSB1K3, CcdBC(T-CcdB2+ pSB1C3), CcdBK(T-CcdB2+ pSB1K3), R-CcdBC(R-CcdB3+ pSB1C3), R-CcdB-TC(R-CcdB-T1+ pSB1C3), R-CcdB-TK(R-CcdB-T1+ pSB1K3)

4<sup>th</sup> Sep: Transformation, and culture it in medium

4<sup>th</sup> Sep: transform and shake bacteria

5<sup>th</sup> Sep: Extract the plasmid, and detect by electrophoresis

6<sup>th</sup> Sep: transform ligation results again, coat plate

7<sup>th</sup> Sep: picking the bacteria

12<sup>th</sup> Sep: deliver CcdBK1、CcdBC1、R-CcdBC1、R-CcdBK1、R-CcdB-TK、R-CcdB-TC1、CcdB-Ter to company to sequence



5<sup>th</sup> Jul: cultivate 108OA in LB medium

 $6^{th}$  Jul: extract plasmids and digest108OA(X&P) and 114CA(S&P); link 108OA+114CA to be LuxR-I overnight

7<sup>th</sup> Jul: transform LuxR-I

8<sup>th</sup> Jul: select 6 monoclonal bacteria

9<sup>th</sup> Jul: detect the solution by PCR

10<sup>th</sup> Jul: retransform and cultivate in LB medium

11<sup>th</sup> Jul: extract plasmids of LuxR-I and detect it by enzyme digestion

12<sup>th</sup> Jul: retransform LuxR-I and coat plate

13<sup>th</sup> Jul: LuxxR-I grows in lawn; cultivate transformed solution in LB medium

14<sup>th</sup> Jul: extract plasmids of LuxR-I

5<sup>th</sup> Aug: cultivate 1080A in LB medium

6<sup>th</sup> Aug: extract plasmid of 108OA; digest 114CA (E&S) and 108OA (E&X) with enzymes

7<sup>th</sup> Aug: transform LuxR-I and cultivate the solution in LB medium

9<sup>th</sup> Aug: extract plasmid of LuxR-I and detect it with electropherosis

10<sup>th</sup> Aug: cultivate 118CA in LB medium

 $11^{th}$  Aug: extract plasmid and digest 118CA(S&P) and 108OA(X&P); link 118CA+108OA to become LuxR

12<sup>th</sup> Aug: transform LuxR and cultivate the solution in LB medium

13<sup>th</sup> Aug: extract plasmid and detect it with electropherosis

15<sup>th</sup> Aug: transform plasimd LuxR and cultivate the solution in LB medium

16<sup>th</sup> Aug: coat plate of LuxR

17<sup>th</sup> Aug: select 8 bacteria of LuxR

18<sup>th</sup> Aug: detect the solution by PCR

19<sup>th</sup> Aug: cultivate transformed solution of LuxR in LB medium

20<sup>th</sup> Aug: extract plasmids and detect them by PCR

21<sup>st</sup> Aug: transform plasmid LuxR

22<sup>nd</sup> Aug: select 3 bacteria and cultivate LuxR2 in LB medium

23<sup>rd</sup> Aug: extract plasmids and detect them with enzyme digestion

pV-cl



17<sup>th</sup> July: shake bacteria 523CC

18<sup>th</sup> Jul: extract plasmid of 523CC and detect it with electropherosis, digest 523CC (S&P) with enzymes overnight

19<sup>th</sup>Jul: extract plasmid, link 523CC+110CA to become pV-cl

 $20^{\text{th}}$  Jul: transform pV-cl and cultivate the solution in LB medium

21<sup>th</sup> Jul: there is no bacterium on the plate of LB, transform again, and cultivate the solution in LB medium

22<sup>th</sup> Jul: no bacterium

- 23<sup>th</sup> Jul: redo our work from the beginning; cultivate 523CC and 110CA in LB medium
- 24<sup>th</sup> Jul: extract plasmid of 523CC and 110CA; digest 523CC (S&P) and 10CA (X&P) with enzymes

25<sup>th</sup> Jul: after detecting them with electrophoresis, extract the gel, link 523CC+110CA to become pV-cl, transform and cultivate the solution in LB medium

26<sup>th</sup> Jul: there is still no bacterium on the plate of LB

- 27<sup>th</sup> Jul: bacterium appears, select 10 monoclonal bacteria
- $28^{\text{th}}$  Jul: detect the solution by PCR, no result
- 5<sup>th</sup> Aug: cultivate 523CC and 110CA in LB medium
- 6<sup>th</sup> Aug: extract plasmid of 523CC and 110CA, digest 523CC (S&P) and 10CA (X&P) with enzymes for 2h, link 523CC+110CA to become pV-cl,
- 7<sup>th</sup> Aug: transform and cultivate the solution in LB medium

9<sup>th</sup> Aug: extract plasmid of pV-cl, and detect it with electrophoresis

29<sup>th</sup> Aug: detect plasmid by PCR

 $1^{st}$  Sep: digest 523CC (S&P) and 10CA (X&P) with enzymes,

- 2<sup>nd</sup> Sep: after detecting them with electrophoresis, extract the gel, link 523CC+110CA to become pV-cl
- 3<sup>rd</sup> Sep: transform and cultivate the solution in LB medium
- 4<sup>th</sup> Sep: extract plasmid of pV-cI and detect it with electrophoresis, detect it by digestion.



10<sup>th</sup> Aug: cultivate 106IA 106KA and 306PA in LB medium

- 11<sup>th</sup> Aug: extract plasmid of 106IA、106KA and 306PA, digest 306PA (X&P)、106KA (S&P)、 106IA (S&P) with enzymes for 2h, after detecting them with electrophoresis, extract the gel, link 106IA+306PA to become pT-Lacl and 106KA+306PA to become pC-Lacl.
- 12<sup>th</sup> Aug: transform and cultivate the solution in LB medium
- 13<sup>th</sup> Aug: extract plasmid of pC-LacI and pT-LacI, detect them with electrophoresis
- 14<sup>th</sup> Aug: redo the work, transform and cultivate the solution in LB medium
- 15<sup>th</sup> Aug: extract plasmid of pC-LacI and pT-LacI, detect them with electrophoresis
- 16<sup>th</sup> Aug: digest 306PA (X&P)、106KA (S&P)、106IA (S&P) with enzymes for 2h, after detecting them with electrophoresis, extract the gel, link 106IA+306PA to become pT-Lacl and 106KA+306PA to become pC-Lacl.
- 17<sup>th</sup> Aug: transform and cultivate the solution in LB medium
- 18<sup>th</sup> Aug: extract plasmid of pC-LacI and pT-LacI, detect them with electrophoresis
- 29<sup>th</sup> Aug: detect plasmid by PCR, pT-LacI positive, pC-LacI negative

30<sup>th</sup> Aug: transform pT-LacI and pC-LacI, coat plate

 $31^{th}$  Aug: select monoclonal bacteria of pT-Lacl, lawn on the plate of pC-Lacl, do colony PCR

1<sup>st</sup> Sep: cultivate pT-LacI1 in LB medium

2<sup>nd</sup> Sep: extract plasmid of pT-LacI, digest and then do gel extraction, link pT-LacI1+pSB1C3 , pT-LacI1+pSB1K3

3<sup>rd</sup> Sep: transform pT-LacIC、 pT-LacIK, coat plate,

4<sup>th</sup> Sep: select 5 monoclonal bacteria of pT-LacIK, cultivate in LB medium

5<sup>th</sup> Sep: extract plasmid of pT-LacIK, digest and then do gel extraction, link pSB1C3+pT-LacIC

6<sup>th</sup> Sep: select 5 monoclonal bacteria

8<sup>th</sup> Sep: deliver pT-LacIC1 to company to sequence it

Promoter Purel

8<sup>th</sup> Jul: amplify promoter PureI from template DNA

Program

| <b>94</b> ℃ | 5min     |        |        |
|-------------|----------|--------|--------|
| <b>94</b> ℃ | 30s      | Ъ      |        |
| 54°C        | 30s      | - 32 0 | cycles |
| 72℃         | 38s      |        |        |
| 72℃         | 5min     |        |        |
| 4℃          | $\infty$ |        |        |

Link it to T-Vector after purified

9<sup>th</sup> Jul: transform T-Purel

10<sup>th</sup> Jul: select 5 monoclonal of T-Purel from plate and detect the solution by PCR

11<sup>th</sup> Jul: deliver T-Purel, T-Purel1 and T-Purel5 to be sequenced

14<sup>th</sup> Jul: get the results of sequencing and redesign primer to synthetize

3<sup>rd</sup> Aug: amplify promoter Purel on template DNA and extract gel; standardize promoter by standard primer

6<sup>th</sup> Aug: amplify promoter Purel on template DNA and extract gel; digest it by enzymes

 $7^{th}$  Aug: extract plasmid of 103AC 105 AK, PCR standardize promoter by standard primer

,than extract gel; digest 103AC(E&P), 105AK(E&P), Purel(E&P) and then do gel extraction, Transform Purel and cultivate the solution in LB medium

8<sup>th</sup> Aug: extract gel of pSB1C3、 pSB1K3, link PureI+pSB1K3 to become PureIK, link PureI+pSB1C3 to become PureIC, transform and cultivate the solution in LB medium

9<sup>th</sup> Aug: extract plasmid of Purel, detect it with electrophoresis

 $10^{th}$  Aug: relink PureIC  $\$  PureIK, transform and cultivate the solution in LB medium

 $12^{th}$  Aug: transform PureIC, cultivate the solution in LB medium

- 13<sup>th</sup> Aug: extract plasmid of PureIK
- 14<sup>th</sup> Aug: redo the standardization work of Purel, after extraction, use PCR to plus A, link to T-Vector to form st-Purel,

15<sup>th</sup> Aug: transform st-Purel, cultivate the solution in LB medium

16<sup>th</sup> Aug: coat plate,

17<sup>th</sup> Aug: select10 monoclonal bacteria of st-Purel,

18<sup>th</sup> Aug: do PCR to detect the bacteria solution

 $\rm 27^{th}$  Aug: cultivate Purel  $\sim \rm PurelK$  and st-Purel in LB medium

28<sup>th</sup> Aug: extract plasmid

 $29^{th}$  Aug: detect plasmid of Purel  $\$  Purel K  $\$  st-Purel by PCR

 $2^{nd}$  Sep: transform st-Purel, cultivate the solution in LB medium

3<sup>rd</sup> Sep: select 5 monoclonal bacteria of st-PureI

4<sup>th</sup> Sep: do PCR to detect the bacteria solution

Gene NOX

15<sup>th</sup> Jul: do PCR to get gene NOX from template

Program

- 95℃ 5min
- 95℃ <sup>30s</sup> ¬
- 54°C 30s 32 cycles

 $\infty$ 

- 72°C 90s -
- 72℃ 10min

4℃

Link it to T-Vector after purified

16<sup>th</sup> Jul: transform T-NOX, cultivate the solution in LB medium

17<sup>th</sup> Jul: select8 monoclonal bacteria of T-NOX

 $20^{\text{th}}$  Jul: do PCR to detect the bacteria solution, number 1, 3 positive

21<sup>th</sup> Jul: deliver T-NOX1  $\sim$  T-NOX3 to company to sequence it

- 3<sup>rd</sup> Aug: redo do PCR to get gene NOX from template, after purified, use PCR to standard gene NOX
- $6^{th}$  Aug: PCR gene NOX, after extraction, digest with enzymes Notl & Spel, cultivate at  $80^{\circ}$ C for 15min, link NOX+pSB1AK3
- 7<sup>th</sup> Aug: standard gene NOX, gel extraction, digest, transform NOX, cultivate the solution in LB medium
- 8<sup>th</sup> Aug: link NOX+pSB1C3 to become NOXC, NOX+pSB1K3 to become NOXK, transform NOXC、NOXK
- 9<sup>th</sup> Aug: extract the plasmids and detect them by electrophoresis
- 12<sup>th</sup> Aug: extract the plasmids and detect them by electrophoresis, transform NOXC, cultivate the solution in LB medium

13<sup>th</sup> Aug: extract the plasmids of NOXK, detect them by electrophoresis

14<sup>th</sup> Aug: standard gene NOX, gel extraction, use PCR to plus A, link to T-Vector

15<sup>th</sup> Aug: transform st-NOX, cultivate the solution in LB medium

16<sup>th</sup> Aug: coat plate

- 17<sup>th</sup> Aug: select10monoclonal bacteria of st-NOX
- 18<sup>th</sup> Aug: do PCR to detect the bacteria solution
- 27<sup>th</sup> Aug: cultivate NOX、NOXK、st-NOX
- 28<sup>th</sup> Aug ; extract plasmids
- 29<sup>th</sup> Aug: detect genes by conducting PCR on plasmids
- 31<sup>th</sup> Aug: cultivate pET-28a
- 1<sup>st</sup> Sep: extract plasmids from pET-28a, and have them digested by EcoRI&Xhol

2<sup>th</sup> Sep: extract from gel, amplify NOX,T-NOX3 by PCR, change the site for enzyme digestion, extract from gel, digestion by enzymes, link NOX and pET-28a, link NOX3 and pET

4<sup>TH</sup> Sep : transform NOX-pET NOX3-Pet, cultivate them using transforming solution

 ${\rm 5}^{\rm th}$  Sep: extract plasmids from NOX-pET and NOX3-pET, transform DH5  $\alpha$   $\backsim$  BL21 seperately

Gene CsgD

18<sup>TH</sup> Jul: extract gDNA from  $\lambda$  K12 roughly, and amplify gene CsgD based on the extracted gDNA, extract from gel

 $19^{TH}$  Jul: standardize CsgD2 based on CsgD , extract from gel

20<sup>th</sup> Jul: link CsgD,CsgD2 to T-Vector

21<sup>TH</sup> Jul: transform T-CsgD,T-CsgD2, coat plates

22TH Jul: bacterial plaques are formed with both T-CsgD and T-CsgD2, retransform T-CsgD, coat plates

23th Jul: both can still develop into plaques

11  $^{th}$  Oct: re-extract gDNA from  $\lambda$  K12 using new compound solution

12<sup>th</sup> Oct: re-amplify gene CsgD from gDNA

 $13^{TH}$  Oct: extract CsgD from gel, standardize gene st-CsgD, extract from gel, and conduct enzyme digestion on st-CsgD

14<sup>th</sup> Oct: conduct PCR plus A reaction on CsgD,st-CsgDC at 72°C for 90mins, link to T-Vector, link enzyme-digested st-CsgD to Psblc3

 $15^{TH}$  Oct: transform CsgD, st-CsgD, CsgDC, cultivate them in transforming solution

16<sup>th</sup> Oct: CsgDC is not equally distributed; coat CsgD, st-CsgD on plates

17<sup>th</sup> Oct: pick 10 monoclones each for CsgD, st-CsgD

18<sup>th</sup> Oct: detect CsgD, st-CsgD using PCR , st-CsgD3 shows positive

31th Oct: cultivate st-CsgD3

1st Sep: extract plasmids from st-CsgD3 ,detect using enzyme digestion

3nd Sep: re-collect fragmentated CsgD by gel to have it amplified using PCT, gel re-collection

 $4^{th}$  Sep: standardize gene CsgD, gel re-collection, enzyme digested at  $37\,^\circ\!\!{\rm C}\,$  for  $2h\,$  and at

80°C for 15min, linked to pSB.

5<sup>th</sup> Sep: transform CsgDK, CsgDC , coat plates

6<sup>th</sup> Sep: no plaque of CsgDC, pick the white one from 2 plaques of CsgDK

7<sup>th</sup> Sep: extract plasmids from CsgDK1, detect by enzyme digestion

8<sup>th</sup> Sep; have CsgDK1 sequenced by a sequencing company

14<sup>th</sup> Sep: cultivate CsgDK1

15<sup>TH</sup> Sep: extract plasmids from CsgDK1, enzyme digestion

16<sup>th</sup> Sep: gel re-collection for CsgDK1, link to pSB1C3

20<sup>th</sup> Sep: transform CsgDC, coat plates

21th Sep: pick up 5 plaques

22th Sep: detect using PCT with all showing positive

23th Sep: cultivate CsgDC1,CsgDC2

24<sup>TH</sup> Sep: extract plasmids from CsgDC1, CsgDC2, detect by electrophoresis

25<sup>th</sup> Sep: add CsgDC to the 96-holes plate, have it dry in cold vacuum. Submit

Gene pflB、 fdhF

19<sup>th</sup> Jul: amplify fdhF  $_{\rm N}\,$  pflB from Gdna of  $\lambda\,$  K12, gel re-collection, link to T-Vector after plus a reaction

21th Jul: transform T-fdhF、 T-pflB, cultivate them in transforming solution

22th Jul: coat plates

23th Jul: pick 10 plaques each

25<sup>th</sup> Jul: detect using PCR

13<sup>th</sup> Oct: re-amplify pflB、 fdhF from gDNA

 $14^{TH}$  Oct: gel re-collection for pflB  $\$  fdhF

21th Oct: amplify pflB, gel re-collection

22th Oct: pre-mutation, fragmentate pflB into 4 pieces using mutation primer, electrophoresis

23th Oct: induce site-specific mutation on pflB, digest pflB on each site using mutation primers, gel re-collection

24<sup>th</sup> Oct: link fragmented pieces using overlapped elongation PCR, conduct electrophoresis on each step and re-collect

25<sup>th</sup> Oct: link pflB

26<sup>th</sup> Oct: amplify mutated pflB using end primers, electrophoresis, failure

27<sup>th</sup> Oct: re-link pflb fragments

28<sup>th</sup> Oct: detect mutated spfIB

 $29^{th}$  Oct: standardize fdhF spfIB based on standard primers, re-collect fdhF spfIB followed by enzyme digestion, link to pSB1K3 pSB1C3

1<sup>st</sup> Sep: transform, cultivate in transforming solution

2<sup>nd</sup> Sep: re-transform, coat plates

3<sup>rd</sup> Sep: no plaques

 $4^{th}$  Sep: re-amplify pflB  $\$  spflB  $\$  fdhF, change enzyme digestion sites

 $5^{th}$  Sep: gel re-collection for pflB spflB fdhF, enzyme digestion, link to pET-28a vector.

6<sup>th</sup> Sep: transform pflB-pET、 spflB-pET、 fdhF-pET, coat plates

7<sup>th</sup> Sep: no plaques on plates, re-transform

8<sup>th</sup> Sep: no plaques again

 $9^{th}$  Sep: re-amplify pflB  $\$  fdhF using PCR, gel re-collection, enzyme digestion overnight

10<sup>th</sup> Sep: link to Pet-28a vector

11<sup>th</sup> Sep: transform, cultivate in transforming solution

 $12^{th}$  Sep: extract plasmids followed by electrophoresis, transform to DH5  $\alpha$  and BL21 separately.