Team:ZJU-China

From 2012.igem.org

(Difference between revisions)
Line 1: Line 1:
-
{|align="justify"
+
{|align="center"
-
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
+
|[[Image:ZJU-China_logo.png|center|thumb|900px]]
-
|[[Image:ZJU-China_logo.png|100px|right|frame]]
+
-
|-
+
-
|
+
-
''Tell us more about your project.  Give us background.  Use this as the abstract of your project.  Be descriptive but concise (1-2 paragraphs)''
+
-
|[[Image:ZJU-China_team.png|100px|right|frame|Your team picture]]
+
-
|-
+
-
|
+
-
|align="center"|[[Team:ZJU-China | Team ZJU-China]]
+
-
|}
+
-
<!--- The Mission, Experiments --->
 
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
== <center>'''Our wiki is under construction - come back soon for more project details!'''</center>==
-
!align="center"|[[Team:ZJU-China|Home]]
+
 
-
!align="center"|[[Team:ZJU-China/Team|Team]]
+
{|align="justify" 2012 marks the fourth year of the Cornell iGEM team's participation in the competition. Last year we did [http://2011.igem.org/Team:Cornell very well], and this year we aim to do even better!
-
!align="center"|[http://igem.org/Team.cgi?year=2012&team_name=ZJU-China Official Team Profile]
+
 
-
!align="center"|[[Team:ZJU-China/Project|Project]]
+
Canadian oil sands are a vast oil reserve that, given rising prices of petroleum, are an attractive alternative to traditional sources of crude oil. However, there are numerous public health and environmental concerns regarding the oil sands extraction process. One environmental concern is the contamination of Canadian watersheds by seepage from tailings ponds. To better monitor this issue, we will engineer a novel biosensing platform with the electroactive bacterial species Shewanella oneidensis MR-1, which has the unique capability to directly transfer electrons to solid-state electrodes. We plan to exploit this feature by genetically manipulating S. oneidensis MR-1 to upregulate its metal- reduction capacity in the presence of analyte to generate direct current output in a whole-cell biosensor. Our goal is to develop a fully autonomous electrochemical biosensor that complements the current oil sands monitoring system by providing real-time data over extended periods of time. Furthermore, our device will circumvent the costs and complications of producing and maintaining photodiode circuits used for data acquisition in bioluminescent reporter systems by instead producing a direct electrical output. While our platform is adaptable to sensing a wide range of analytes, we will initially focus on arsenic-containing compounds and naphthalene, a polycyclic aromatic hydrocarbon (PAH) – known contaminants of oil sands tailings ponds. We believe that our biosensor will be a valuable tool for remote, continuous, and long-term monitoring of pollutants in rivers and key waterways.
-
!align="center"|[[Team:ZJU-China/Parts|Parts Submitted to the Registry]]
+
 
-
!align="center"|[[Team:ZJU-China/Modeling|Modeling]]
+
In order to build and test this device, we plan to:  
-
!align="center"|[[Team:ZJU-China/Notebook|Notebook]]
+
: Synthesize novel reporter strains for the production of electrical output in response to arsenic and the PAH naphthalene.
-
!align="center"|[[Team:ZJU-China/Safety|Safety]]
+
: Characterize electrical output of reporter strains in response to the pollutant of interest.
-
!align="center"|[[Team:ZJU-China/Attributions|Attributions]]
+
: Optimize this response for relevant concentrations of pollutant in water samples.
 +
: Construct a functional prototype for an affordable, field deployable device.
 +
 
 +
|[[Image:ZJU-China_team.png|center|thumb|900px]]
|}
|}

Revision as of 06:27, 14 July 2012

ZJU-China logo.png


Our wiki is under construction - come back soon for more project details!

Canadian oil sands are a vast oil reserve that, given rising prices of petroleum, are an attractive alternative to traditional sources of crude oil. However, there are numerous public health and environmental concerns regarding the oil sands extraction process. One environmental concern is the contamination of Canadian watersheds by seepage from tailings ponds. To better monitor this issue, we will engineer a novel biosensing platform with the electroactive bacterial species Shewanella oneidensis MR-1, which has the unique capability to directly transfer electrons to solid-state electrodes. We plan to exploit this feature by genetically manipulating S. oneidensis MR-1 to upregulate its metal- reduction capacity in the presence of analyte to generate direct current output in a whole-cell biosensor. Our goal is to develop a fully autonomous electrochemical biosensor that complements the current oil sands monitoring system by providing real-time data over extended periods of time. Furthermore, our device will circumvent the costs and complications of producing and maintaining photodiode circuits used for data acquisition in bioluminescent reporter systems by instead producing a direct electrical output. While our platform is adaptable to sensing a wide range of analytes, we will initially focus on arsenic-containing compounds and naphthalene, a polycyclic aromatic hydrocarbon (PAH) – known contaminants of oil sands tailings ponds. We believe that our biosensor will be a valuable tool for remote, continuous, and long-term monitoring of pollutants in rivers and key waterways. In order to build and test this device, we plan to:
Synthesize novel reporter strains for the production of electrical output in response to arsenic and the PAH naphthalene.
Characterize electrical output of reporter strains in response to the pollutant of interest.
Optimize this response for relevant concentrations of pollutant in water samples.
Construct a functional prototype for an affordable, field deployable device.
ZJU-China team.png