Team:WHU-China/Project

From 2012.igem.org

(Difference between revisions)
Line 311: Line 311:
Project Description
Project Description
</h3>
</h3>
-
</a>
 
<p align="justify">
<p align="justify">
The utmost purpose of our project is to emancipate people from obesity.
The utmost purpose of our project is to emancipate people from obesity.
Line 606: Line 605:
.
.
</p>
</p>
-
</div>
 
-
<em class="clear">
 
-
</em>
 
-
</div>
 
-
<div class="footer">
 
-
</div>
 
-
</div>
 
-
<script src="http://www.yichengliu.com/code/igem/project.js">
 
-
</script>
 
-
</body>
 
-
 
-
</html>
 
-
<html xmlns="http://www.w3.org/1999/xhtml">
 
-
<body>
 
-
<script src="http://code.jquery.com/jquery-1.7.2.min.js">
 
-
</script>
 
-
<script>
 
-
function picObj(src, title, detail, href) {
 
-
this.src = src;
 
-
this.title = title;
 
-
this.detail = detail;
 
-
this.href = href;
 
-
}
 
-
//*************************自定义数据部分*************************
 
-
//定义菜单及侧边栏数据
 
-
var menuObj = {
 
-
Home: [{
 
-
title: "<strong>what's new</strong>",
 
-
picArray: [new picObj("http://imgsrc.baidu.com/forum/pic/item/d25e8bd4b31c87011d9cdb7c277f9e2f0708ff34.jpg", "one piece", "yi zhang haizeiwang de tu", "http://tieba.baidu.com/f?kw=%BA%A3%D4%F4%CD%F5"), new picObj("http://imgsrc.baidu.com/forum/pic/item/d25e8bd4b31c87011d9cdb7c277f9e2f0708ff34.jpg", "one piece", "yi zhang haizeiwang de tu", "http://tieba.baidu.com/f?kw=%BA%A3%D4%F4%CD%F5"), new picObj("http://imgsrc.baidu.com/forum/pic/item/d25e8bd4b31c87011d9cdb7c277f9e2f0708ff34.jpg", "one piece", "yi zhang haizeiwang de tu", "http://tieba.baidu.com/f?kw=%BA%A3%D4%F4%CD%F5")]
 
-
},
 
-
{
 
-
title: "<strong>pathway introduction</strong>",
 
-
picArray: [new picObj("2.png", "title 2", "pathway introduction 1pathway introduction 1pathway introduction 1pathway introduction 1pathway introduction 1pathway introduction 1pathway introduction 1pathway introduction 1pathway introduction 1pathway introduction 1production 1", "#"), new picObj("2.png", "title 2", "pathway introduction 2 introduction 2 introduction 2 introduction 2 introduction 2 introduction 2 introduction 2 introduction 2 introduction 2 introduction 2 introduction 2 introduction 2 introduction 2 introduction 2", "#"), new picObj("2.png", "title 2", "pathway introduction 3way introduction 3way introduction 3way introduction 3way introduction 3way introduction 3way introduction 3way introduction 3way introduction 3way introduction 3way introduction 3way introduction 3", "#")]
 
-
},
 
-
{
 
-
title: "<strong>future perspective</strong>",
 
-
picArray: [new picObj("3.png", "title 3", "future prospective 1uture prospective 1uture prospective 1uture prospective 1uture prospective 1uture prospective 1uture prospective 1uture prospective 1uture prospective 1uture prospective 1uture prospective 1uture prospective 1utureive 1", "#"), new picObj("3.png", "title 3", "future prospective 2e prospective 2e prospective 2e prospective 2e prospective 2e prospective 2e prospective 2e prospective 2e prospective 2e prospective 2e prospective 2e prospective 2e prospective 2e prospecpective 2", "#"), new picObj("3.png", "title 3", "future prospective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3pective 3", "#")]
 
-
},
 
-
{
 
-
title: "<strong>about us</strong>",
 
-
picArray: [new picObj("4.png", "title 4", "about us 1", "#"), new picObj("4.png", "title 4", "about us 2", "#"), new picObj("4.png", "title 4", "about us 3", "#")]
 
-
}],
 
-
Team: [{
 
-
title: '<strong>Members</strong>',
 
-
dir: [{
 
-
title: 'aaaa',
 
-
href: '#aaaa'
 
-
}]
 
-
},
 
-
{
 
-
title: '<strong>Instructors</strong>',
 
-
dir: [{
 
-
title: 'bbbb',
 
-
href: '#bbbb'
 
-
}]
 
-
},
 
-
{
 
-
title: '<strong>Team History</strong>',
 
-
dir: []
 
-
},
 
-
{
 
-
title: '<strong>about WHU</strong>',
 
-
dir: []
 
-
},
 
-
{
 
-
title: '<strong>about Our Lab</strong>',
 
-
dir: []
 
-
},
 
-
{
 
-
title: '<strong>Acknol-</br>edgements</strong>',
 
-
dir: []
 
-
},
 
-
 
-
],
 
-
Project: [{
 
-
title: '<strong>Description</strong>',
 
-
dir: []
 
-
},
 
-
{
 
-
title: '<strong>Background</strong>',
 
-
dir: [
 
-
 
-
]
 
-
},
 
-
{
 
-
title: '<strong>Promoter Design</strong>',
 
-
dir: [{
 
-
title: 'Indirect Pathway',
 
-
href: '#Indirect Pathway'
 
-
},
 
-
{
 
-
title: 'Direct Regulatory Promoter Design',
 
-
href: '#Direct Regulatory Promoter Design'
 
-
},
 
-
{
 
-
title: 'Pcar',
 
-
href: '#Pcar'
 
-
},
 
-
{
 
-
title: 'PfadR',
 
-
href: '#PfadR'
 
-
},
 
-
{
 
-
title: 'Standard',
 
-
href: '#Standard'
 
-
}]
 
-
},
 
-
{
 
-
title: '<strong>Device I: Fatty Acid Degradation</strong>',
 
-
dir: []
 
-
},
 
-
{
 
-
title: '<strong>Device II: Cellulose Synthesis</strong>',
 
-
dir: []
 
-
},
 
-
{
 
-
title: '<strong>Device III: Colonization</strong>',
 
-
dir: []
 
-
},
 
-
],
 
-
Standard: [{
 
-
title: '<strong>Future Perspectives</strong>',
 
-
dir: []
 
-
},
 
-
 
-
{
 
-
title: '<strong>Model I: Fatty Acid Degradation</strong>',
 
-
dir: [{
 
-
title: 'aaaa',
 
-
href: '#aaaa'
 
-
}]
 
-
},
 
-
{
 
-
title: '<strong>Model II: Microbiota Regulation</strong>',
 
-
dir: [{
 
-
title: 'bbbb',
 
-
href: '#bbbb'
 
-
}]
 
-
},
 
-
{
 
-
title: '<strong>Software Tool: FANCY</strong>',
 
-
dir: []
 
-
}],
 
-
Notes: [{
 
-
title: '<strong>Safety</strong>',
 
-
dir: [{
 
-
title: 'aaaa',
 
-
href: '#aaaa'
 
-
}]
 
-
},
 
-
{
 
-
title: '<strong>Protocols</strong>',
 
-
dir: [{
 
-
title: 'bbbb',
 
-
href: '#bbbb'
 
-
}]
 
-
},
 
-
{
 
-
title: '<strong>Events</strong>',
 
-
dir: []
 
-
},
 
-
{
 
-
title: '<strong>Brain-</br>storming</strong>',
 
-
dir: []
 
-
},
 
-
{
 
-
title: '<strong>Gallery</strong>',
 
-
dir: []
 
-
}],
 
-
HumanPractice: [{
 
-
title: '<strong>Outline</strong>',
 
-
dir: [{
 
-
title: 'aaaa',
 
-
href: '#aaaa'
 
-
}]
 
-
},
 
-
{
 
-
title: '<strong>Questionaire Survey</strong>',
 
-
dir: [{
 
-
title: 'bbbb',
 
-
href: '#bbbb'
 
-
}]
 
-
},
 
-
{
 
-
title: '<strong>Publicity</strong>',
 
-
dir: []
 
-
}]
 
-
};
 
-
//*************************自定义数据部分*************************
 
-
 
-
</script>
 
-
<style type="text/css">
 
-
/* * base css, DO NOT MODIFY! */ * { margin: 0; padding: 0; border: 0;
 
-
font-family: "Verdana", sans-serif; color: #333; list-style: none; outline:
 
-
none; resize: none; } html { overflow-y: scroll; } body { background: url("https://static.igem.org/mediawiki/2012/6/69/Body-bg2.jpg")
 
-
center center fixed; } a { text-decoration: none; } .clear { width: 0;
 
-
height: 0; line-height: 0; display: block; clear: both; } /* * common css,
 
-
include "header","footer"... */ div.center { width: 940px; margin: 0 auto;
 
-
} div.header { width: 940px; height: 357px; background: url("https://static.igem.org/mediawiki/2012/8/80/Header-bg2.png")
 
-
no-repeat; position: relative; z-index: 50; } div.nav { position: absolute;
 
-
height: 80px; top: 206px; left: 350px; } li.nav-outerLi { display: block;
 
-
float: left; width: 80px; height: 80px; margin: 0 6px; cursor: pointer;
 
-
} h2.nav-h21,h2.nav-h22,h2.nav-h23,h2.nav-h24,h2.nav-h25,h2.nav-h26 { display:
 
-
block; background: url("https://static.igem.org/mediawiki/2012/9/91/Nav-tabs.png")
 
-
no-repeat; width: 80px; height: 80px; background-position: 0 0; z-index:
 
-
150; position: relative; } h2.nav-h22 { background-position: -80px 0; }
 
-
h2.nav-h23 { background-position: -160px 0; } h2.nav-h24 { background-position:
 
-
-240px 0; } h2.nav-h25 { background-position: -320px 0; } h2.nav-h26 {
 
-
background-position: -400px 0; } h2.nav-h21:hover { background-position:
 
-
0 -80px; } h2.nav-h22:hover { background-position: -80px -80px; } h2.nav-h23:hover
 
-
{ background-position: -160px -80px; } h2.nav-h24:hover { background-position:
 
-
-240px -80px; } h2.nav-h25:hover { background-position: -320px -80px; }
 
-
h2.nav-h26:hover { background-position: -400px -80px; } h2.nav-h21on {
 
-
background-position: 0 -160px; } h2.nav-h22on { background-position: -80px
 
-
-160px; } h2.nav-h23on { background-position: -160px -160px; } h2.nav-h24on
 
-
{ background-position: -240px -160px; } h2.nav-h25on { background-position:
 
-
-320px -160px; } h2.nav-h26on { background-position: -400px -160px; } ul.nav-innerUl{
 
-
position: absolute; top: 40px; padding-top: 40px; width: 76px; border-left:
 
-
2px solid #000; border-right: 2px solid #000; z-index: 140; display: none;
 
-
} em.nav-libg{ display: block; width: 96px; height: 11px; background: url('https://static.igem.org/mediawiki/2012/4/48/Nav-libg.png');
 
-
margin-left: -10px; } ul.nav-innerUl1{ background: #fffaca; } ul.nav-innerUl2{
 
-
background: #dedede; } ul.nav-innerUl3{ background: #d9f0c9; } ul.nav-innerUl4{
 
-
background: #f6e5ff; } ul.nav-innerUl5{ background: #ebfcff; } ul.nav-innerUl6{
 
-
background: #ffeee8; } li.nav-innerLi{ font-size: 10px; line-height: 14px;
 
-
padding: 3px 5px; } li.nav-innerLi:hover{ background: #fff; } div.middle
 
-
{ width: 940px; background: #e6deb8; background: rgba(230,222,184,0.5);
 
-
position: absolute; top: 178px; } div.aside { width: 174px; height: 441px;
 
-
background: url("https://static.igem.org/mediawiki/2012/9/96/Aside-bg2.png")
 
-
no-repeat; margin-left: 10px; float: left; padding: 179px 86px 0 40px;
 
-
} div.asideFixed { position: fixed; top: 0; } ul.aside-outerUl { position:
 
-
relative; margin: 7px 10px; } li.aside-outerLi { margin: 10px 0; } li.aside-outerLi
 
-
h2{ padding: 4px 0; color: #725718; background: #fff1a9; font-size: 14px;
 
-
line-height: 22px; font-weight: bold; text-align: center; cursor: pointer;
 
-
} li.aside-outerLi:hover h2{ background: #fff8d3; } ul.aside-innerUl {
 
-
display: none; } ul.aside-innerUl li { background: #bdc9ad; margin: 3px
 
-
0; font-family: arial, sans-serif; font-size: 14px; line-height: 22px;
 
-
text-align: center; cursor: pointer; } ul.aside-innerUl li:hover{ background:
 
-
#d4dcc9; } div.main { width: 580px; border: 1px solid #9e8366; background:
 
-
#f0e2c1; float: right; margin: 149px 30px 30px 0; } div.passage { display:
 
-
none; margin: 30px; } div.show{ display: block; } div.passage h3 { font-size:
 
-
26px; line-height: 39px; font-weight: bold; background: #859f93; color:
 
-
#f0e2c1; display: block; width: auto; padding: 0 10px; } div.passage p
 
-
{ margin: 14px 0; font-size: 13px; line-height: 20px; } div.passage img
 
-
{ display: block; float: right; padding: 0 0 20px 30px; background: #f0e2c1;
 
-
} div.footer { } #p-logo { display:none; } #top-section { height:0; border:none;
 
-
} #search-controls { display:none; } #content { position:inherit; width:inherit;
 
-
margin:0; padding:0; background:inherit; color:inherit; border:none; line-height:inherit;
 
-
z-index:2; } .firstHeading { display:none; } #catlinks { display:none;
 
-
} #footer-box { display:none; } #contentSub { display:none; } #menubar
 
-
ul li a { background:none; } #bodyContent h1,#bodyContent h2 { margin:0;
 
-
border:0; padding: 0; } #bodyContent h2.nav-h2-title{ padding: 5px 0; }
 
-
.left-menu:hover { background:none; } .nav-bg-logo{ float: left; }
 
-
</style>
 
-
</head>
 
-
<body>
 
-
<div class="center">
 
-
<div class="header">
 
-
<a href="https://2012.igem.org/Main_Page">
 
-
<img class="nav-bg-logo" src="https://static.igem.org/mediawiki/2012/4/44/Nav-bg-logo1.png"
 
-
/>
 
-
</a>
 
-
<div class="nav">
 
-
<ul class="nav-outerUl">
 
-
<li class="nav-outerLi">
 
-
<a href="https://2012.igem.org/Team:WHU-China">
 
-
<h2 class="nav-h21" title="Home">
 
-
</h2>
 
-
</a>
 
-
<ul class="nav-innerUl nav-innerUl1" name="Home">
 
-
</ul>
 
-
</li>
 
-
<li class="nav-outerLi">
 
-
<a href="https://2012.igem.org/Team:WHU-China/Team">
 
-
<h2 class="nav-h22" title="Team">
 
-
</h2>
 
-
</a>
 
-
<ul class="nav-innerUl nav-innerUl2" name="Team">
 
-
</ul>
 
-
</li>
 
-
<li class="nav-outerLi">
 
-
<a href="https://2012.igem.org/Team:WHU-China/Project">
 
-
<h2 class="nav-h23 nav-h23on" title="Project">
 
-
</h2>
 
-
</a>
 
-
<ul class="nav-innerUl nav-innerUl3" name="Project">
 
-
</ul>
 
-
</li>
 
-
<li class="nav-outerLi">
 
-
<a href="https://2012.igem.org/Team:WHU-China/Standard">
 
-
<h2 class="nav-h24" title="Standard">
 
-
</h2>
 
-
</a>
 
-
<ul class="nav-innerUl nav-innerUl4" name="Standard">
 
-
</ul>
 
-
</li>
 
-
<li class="nav-outerLi">
 
-
<a href="https://2012.igem.org/Team:WHU-China/Notes">
 
-
<h2 class="nav-h25" title="Notes">
 
-
</h2>
 
-
</a>
 
-
<ul class="nav-innerUl nav-innerUl5" name="Notes">
 
-
</ul>
 
-
</li>
 
-
<li class="nav-outerLi">
 
-
<a href="https://2012.igem.org/Team:WHU-China/HumanPractice">
 
-
<h2 class="nav-h26" title="Human Practice">
 
-
</h2>
 
-
</a>
 
-
<ul class="nav-innerUl nav-innerUl6" name="HumanPractice">
 
-
</ul>
 
-
</li>
 
-
</ul>
 
-
</div>
 
-
</div>
 
-
<div class="middle">
 
-
<div class="aside">
 
-
<ul class="aside-outerUl">
 
-
</ul>
 
-
</div>
 
-
<div class="main">
 
-
<div class="passage divcell0">
 
-
<h3>
 
-
Project Description
 
-
</h3>
 
-
<p align="justify">
 
-
The utmost purpose of our project is to emancipate people from obesity.
 
-
It can be achieved by genetically modifying a resident intestinal microbe,
 
-
such as E.coli, to create a novel beneficial bacterial which is competent
 
-
to eliminate the excessive absorption of calorie.
 
-
</p>
 
-
<p align="justify">
 
-
Fatty acids are our primary targets. To prevent the over in-take and accumulation
 
-
of fatty acids, we will try to engineer microbes that can metabolize the
 
-
excessive fatty acids in diet efficiently and effectively before they are
 
-
absorbed by the host. To achieve this, we will overexpress the enzymes
 
-
responsible for fatty acids degradation under the control of a natural
 
-
sensor for concentration of fatty acids-- FadR, a repressor for the genes
 
-
involved in fatty acids degradation. A constitutive promoter will be fused
 
-
to the original binding site of FadR. If such a promoter is placed upstream
 
-
of the target genes, they can only express when the FadR senses the high
 
-
concentration of fatty acids and slides off the site on DNA. The gene expression
 
-
will solely respond to concentration of fatty acids.
 
-
</p>
 
-
<p align="justify">
 
-
Also, since the glucose can be transformed into fatty acids in our body,
 
-
we will try to transform the glucose into polymers, such as cellulose,
 
-
which cannot further be degraded and absorbed by the host. Instead of contributing
 
-
to the formation of fatty acids, the glucose is turned into a healthier
 
-
substance. The polymers made from the glucose may facilitate the growth
 
-
of other intestinal microbes which have been proved to be beneficial for
 
-
maintaining a normal weight. Enzymes responsible for cellulose synthesis
 
-
are accessible from other species of bacteria and can be implanted into
 
-
E.coli. To sense the glucose concentration and respond exclusively to it,
 
-
we choose CRP as a regulator. Specifically, we will change this activator
 
-
into a repressor by overlapping its binding site downstream the constitutive
 
-
promoter instead of in front of it. Then the relative gene can only be
 
-
activated when the CRP cannot bind the site on DNA at high glucose concentration.
 
-
This synthetic promoter may have broad applications. For example, it can
 
-
be used in gene therapy for diabetes.
 
-
</p>
 
-
<p align="justify">
 
-
Another problem we will try to tackle is the survival and the colonization
 
-
of the bacteria in intestine. One commonly accepted theory is that a species
 
-
introduced to a new enviornment gets the chance of surviving and even being
 
-
dominant if it can utilize an energy resource that cannot be used by any
 
-
other species. According to the theory, the unmatchable ability of the
 
-
E.coli to utilize the fatty acids as its carbon sources can already partially
 
-
fulfill the goal. The adhesion to intestinal cells is another factor for
 
-
its survival other than the energy requirement. We will try to increase
 
-
the adhesion ability of the E.coli by enhancing its production of c-di-GMP,
 
-
a second massager which has been reported to increase adhesion of bacteria.
 
-
</p>
 
-
<p align="justify">
 
-
Biological safety should be paid equal attention in the progress of designing
 
-
novel probiotic. To prevent the uncontrolled reproduction of the modified
 
-
E.coli in the intestine, we have designed a death system to wipe out the
 
-
GMOs at will. It is designed to exploit the natural sensor for the signal
 
-
molecule xylose to regulate its target, the endonuclease responsible for
 
-
killing the cell quietly without setting off any immunological reaction.
 
-
Also, Horizontal gene transfer will also trigger the death of the recipient.
 
-
</p>
 
-
<p align="justify">
 
-
To sum up, we not only propose a novel and interesting way to tackle the
 
-
obese problems but also create the biological sensors for fatty acids and
 
-
glucose which have broad applications in detection and therapy of related
 
-
diseases.
 
-
</p>
 
-
</div>
 
-
<div class="passage divcell1">
 
-
<p>
 
-
<h4>
 
-
Obesity: a serve global problem
 
-
</h4>
 
-
<p align="justify">
 
-
Obesity refers to a health condition that body fat is accumulated to some
 
-
extent. According to WHO, body mass index (BMI) is an index of weight-for-height
 
-
that is commonly used to classify obesity in adults. It is a risk factor
 
-
for various diseases, such as cardiovascular diseases (mainly heart disease
 
-
and stroke), type 2 diabetes, musculoskeletal disorders (especially osteoarthritis),
 
-
some cancers (endometrial, breast, and colon).
 
-
</p>
 
-
<br />
 
-
<img src="https://static.igem.org/mediawiki/2012/9/9f/Background-1.jpg" width="500"
 
-
height="300" hspace="2" vspace="1" border="2" align="left" />
 
-
<br />
 
-
<p align="justify">
 
-
As it is shown in figure 1 and 2, a large amount of people from all over
 
-
the world are overweight in both developed countries and developing contries
 
-
and it is and will become more and more serve.
 
-
</p>
 
-
</br>
 
-
<img src="https://static.igem.org/mediawiki/igem.org/8/88/The_lancet.png" width="500"
 
-
height="300" hspace="2" vspace="1" border="2" align="left" />
 
-
</br>
 
-
<i>
 
-
Figure 1(from reference [4]): Past and projected prevalence of overweight
 
-
(BMI ≥25 kg/m²)
 
-
</br>
 
-
<img src="https://static.igem.org/mediawiki/2012/0/0b/Background-2.jpg" width="500"
 
-
height="400" hspace="2" vspace="1" border="2" align="right" />
 
-
<br />
 
-
<i>
 
-
Figure 2: Prevalence of obesity in different countries.
 
-
<br />
 
-
(Picture from The Wellington Grey blog)
 
-
</i>
 
-
<br />
 
-
</p>
 
-
<p align="justify">
 
-
<h4>
 
-
The Cause of Obesity
 
-
</h4>
 
-
<p align="justify">
 
-
Obesity is most commonly caused by a combination of excessive food energy
 
-
intake, lack of physical activity, and genetic susceptibility, although
 
-
a few cases are caused primarily by genes, endocrine disorders, medications
 
-
or psychiatric illness.
 
-
</p>
 
-
<p align="justify">
 
-
However, the problem of obesity emerged globally only several decades
 
-
ago. Since the change of genome of a species requires a long time, the
 
-
outbreak of obesity is unlikely to be caused by changes in human genome.
 
-
For most individuals, controlling food intake and doing physical activity
 
-
in a proper way are effective strategies to lose weight. But for some people
 
-
whose health condition or current life pace keeps them away from systemic
 
-
and regular exercise and dieting, modulate the composition of microorganisms
 
-
in intestine might act as an alternative.
 
-
</p>
 
-
<p align="justify">
 
-
Reports by Gordon have shown that, apart from human genome, the collective
 
-
genome of microorganisms (microbiome) in human intestine is associated
 
-
with our obesity [1]. Furthermore, microbiome is able to be changed through
 
-
control of food intake [1].
 
-
</p>
 
-
<p align="justify">
 
-
Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes
 
-
and the Firmicutes. The relative proportion of Firmicutes is increased
 
-
in obese people by comparison with lean people [2].
 
-
</p>
 
-
<img src="https://static.igem.org/mediawiki/2012/f/fe/Background-3.jpg" width="500"
 
-
height="120" hspace="2" vspace="1" border="2" align="top" />
 
-
<i>
 
-
Figure 3: How excess of energy contributes to obesity
 
-
</i>
 
-
</p>
 
-
<p align="justify">
 
-
Pertinent study by Gordon attested their initial hypothesis that changes
 
-
in microbial component have a causal relationship with obesity, thus might
 
-
have potential therapeutic implications [2] [3]. Colonization of germ-free
 
-
mice with an ‘obese microbiota’ results in a significantly greater increase
 
-
in total body fat than colonization with a ‘lean microbiota’ [3].
 
-
</br>
 
-
<img src="https://static.igem.org/mediawiki/2012/c/cc/Background-4.jpg" width="500"
 
-
height="650" hspace="2" vspace="1" border="2" align="top" />
 
-
<i>
 
-
Figure from reference [3]
 
-
</i>
 
-
</p>
 
-
<p align="justify">
 
-
<br />
 
-
<h4>
 
-
Present strategies to lose weight
 
-
</h4>
 
-
<p align="justify">
 
-
Dieting, excercise, Drugs and surgery and major ways to lose weight. However,
 
-
they all have many drawbacks. Dieting may cause nutritional imbalance and
 
-
can be a heavy mental burden since the person may not be able to enjoy
 
-
the food he want. Excercise requires regular time and is ineffective in
 
-
many cases. Drugs and surgery may have many side effects and are many times
 
-
costly.
 
-
</p>
 
-
<h4>
 
-
Our idea
 
-
</h4>
 
-
<p align="justify">
 
-
Previous situations and insights construct our theoretical fundament.
 
-
We try to utilize synthetic biology to provide a cheap, convient, effective
 
-
and safe approach for treating obesity. Instead of passive alternation
 
-
of microbiota, we are trying to construct an engineered E.coli----- E.coslim
 
-
to positively change microbiota in intestine. As Figure 3 shown, we place
 
-
E.coslim in the role of sensing and consuming excessive energy, thus leads
 
-
to the double effects: lowering the proportion of Firmicutes and increasing
 
-
that of Bacteroidetes, and decreasing the energy available in one’s intestine.
 
-
</br>
 
-
</p>
 
-
<p align="justify">
 
-
To achieve these two goals, we designed four devices, fatty acids consumption,
 
-
cellulose synthesis, colonization and death device of E.coslim.
 
-
</p>
 
-
<p>
 
-
<h4>
 
-
References
 
-
</h4>
 
-
<br />
 
-
[1] Ruth E. Ley1, Peter J. Turnbaugh1, Samuel Klein1 & Jeffrey I. Gordon1
 
-
Microbial ecology: Human gut microbes associated with obesity. Nature 444,
 
-
1022-1023 (21 December 2006)
 
-
<br />
 
-
[2] Peter J. Turnbaugh1, Ruth E. Ley1, Michael A. Mahowald1, Vincent Magrini2,
 
-
Elaine R. Mardis1,2 & Jeffrey I. Gordon1 An obesity-associated gut microbiome
 
-
with increased capacity for energy harvest. Vol 444|21/28 December 2006|
 
-
doi: 10.1038/nature05414
 
-
<br />
 
-
[3] Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol.
 
-
2010 Jan; 26(1):5-11.
 
-
<br />
 
-
[4] Y Claire Wang et.al. Health and economic burden of the projected obesity
 
-
trends in the USA and the UK. Lancet. 2011
 
-
</br>
 
-
</p>
 
-
</div>
 
-
<div class="passage divcell2">
 
-
asdsadfasdfa
 
</div>
</div>
<em class="clear">
<em class="clear">

Revision as of 15:43, 25 September 2012

Project Description

The utmost purpose of our project is to emancipate people from obesity. It can be achieved by genetically modifying a resident intestinal microbe, such as E.coli, to create a novel beneficial bacterial which is competent to eliminate the excessive absorption of calorie.

Fatty acids are our primary targets. To prevent the over in-take and accumulation of fatty acids, we will try to engineer microbes that can metabolize the excessive fatty acids in diet efficiently and effectively before they are absorbed by the host. To achieve this, we will overexpress the enzymes responsible for fatty acids degradation under the control of a natural sensor for concentration of fatty acids-- FadR, a repressor for the genes involved in fatty acids degradation. A constitutive promoter will be fused to the original binding site of FadR. If such a promoter is placed upstream of the target genes, they can only express when the FadR senses the high concentration of fatty acids and slides off the site on DNA. The gene expression will solely respond to concentration of fatty acids.

Also, since the glucose can be transformed into fatty acids in our body, we will try to transform the glucose into polymers, such as cellulose, which cannot further be degraded and absorbed by the host. Instead of contributing to the formation of fatty acids, the glucose is turned into a healthier substance. The polymers made from the glucose may facilitate the growth of other intestinal microbes which have been proved to be beneficial for maintaining a normal weight. Enzymes responsible for cellulose synthesis are accessible from other species of bacteria and can be implanted into E.coli. To sense the glucose concentration and respond exclusively to it, we choose CRP as a regulator. Specifically, we will change this activator into a repressor by overlapping its binding site downstream the constitutive promoter instead of in front of it. Then the relative gene can only be activated when the CRP cannot bind the site on DNA at high glucose concentration. This synthetic promoter may have broad applications. For example, it can be used in gene therapy for diabetes.

Another problem we will try to tackle is the survival and the colonization of the bacteria in intestine. One commonly accepted theory is that a species introduced to a new enviornment gets the chance of surviving and even being dominant if it can utilize an energy resource that cannot be used by any other species. According to the theory, the unmatchable ability of the E.coli to utilize the fatty acids as its carbon sources can already partially fulfill the goal. The adhesion to intestinal cells is another factor for its survival other than the energy requirement. We will try to increase the adhesion ability of the E.coli by enhancing its production of c-di-GMP, a second massager which has been reported to increase adhesion of bacteria.

Biological safety should be paid equal attention in the progress of designing novel probiotic. To prevent the uncontrolled reproduction of the modified E.coli in the intestine, we have designed a death system to wipe out the GMOs at will. It is designed to exploit the natural sensor for the signal molecule xylose to regulate its target, the endonuclease responsible for killing the cell quietly without setting off any immunological reaction. Also, Horizontal gene transfer will also trigger the death of the recipient.

To sum up, we not only propose a novel and interesting way to tackle the obese problems but also create the biological sensors for fatty acids and glucose which have broad applications in detection and therapy of related diseases.

Obesity: a serve global problem

Obesity refers to a health condition that body fat is accumulated to some extent. According to WHO, body mass index (BMI) is an index of weight-for-height that is commonly used to classify obesity in adults. It is a risk factor for various diseases, such as cardiovascular diseases (mainly heart disease and stroke), type 2 diabetes, musculoskeletal disorders (especially osteoarthritis), some cancers (endometrial, breast, and colon).



As it is shown in figure 1 and 2, a large amount of people from all over the world are overweight in both developed countries and developing contries and it is and will become more and more serve.



Figure 1(from reference [4]): Past and projected prevalence of overweight (BMI ≥25 kg/m²)

Figure 2: Prevalence of obesity in different countries.
(Picture from The Wellington Grey blog)

The Cause of Obesity

Obesity is most commonly caused by a combination of excessive food energy intake, lack of physical activity, and genetic susceptibility, although a few cases are caused primarily by genes, endocrine disorders, medications or psychiatric illness.

However, the problem of obesity emerged globally only several decades ago. Since the change of genome of a species requires a long time, the outbreak of obesity is unlikely to be caused by changes in human genome. For most individuals, controlling food intake and doing physical activity in a proper way are effective strategies to lose weight. But for some people whose health condition or current life pace keeps them away from systemic and regular exercise and dieting, modulate the composition of microorganisms in intestine might act as an alternative.

Reports by Gordon have shown that, apart from human genome, the collective genome of microorganisms (microbiome) in human intestine is associated with our obesity [1]. Furthermore, microbiome is able to be changed through control of food intake [1].

Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. The relative proportion of Firmicutes is increased in obese people by comparison with lean people [2].

Figure 3: How excess of energy contributes to obesity

Pertinent study by Gordon attested their initial hypothesis that changes in microbial component have a causal relationship with obesity, thus might have potential therapeutic implications [2] [3]. Colonization of germ-free mice with an ‘obese microbiota’ results in a significantly greater increase in total body fat than colonization with a ‘lean microbiota’ [3].
Figure from reference [3]


Present strategies to lose weight

Dieting, excercise, Drugs and surgery and major ways to lose weight. However, they all have many drawbacks. Dieting may cause nutritional imbalance and can be a heavy mental burden since the person may not be able to enjoy the food he want. Excercise requires regular time and is ineffective in many cases. Drugs and surgery may have many side effects and are many times costly.

Our idea

Previous situations and insights construct our theoretical fundament. We try to utilize synthetic biology to provide a cheap, convient, effective and safe approach for treating obesity. Instead of passive alternation of microbiota, we are trying to construct an engineered E.coli----- E.coslim to positively change microbiota in intestine. As Figure 3 shown, we place E.coslim in the role of sensing and consuming excessive energy, thus leads to the double effects: lowering the proportion of Firmicutes and increasing that of Bacteroidetes, and decreasing the energy available in one’s intestine.

To achieve these two goals, we designed four devices, fatty acids consumption, cellulose synthesis, colonization and death device of E.coslim.

References


[1] Ruth E. Ley1, Peter J. Turnbaugh1, Samuel Klein1 & Jeffrey I. Gordon1 Microbial ecology: Human gut microbes associated with obesity. Nature 444, 1022-1023 (21 December 2006)
[2] Peter J. Turnbaugh1, Ruth E. Ley1, Michael A. Mahowald1, Vincent Magrini2, Elaine R. Mardis1,2 & Jeffrey I. Gordon1 An obesity-associated gut microbiome with increased capacity for energy harvest. Vol 444|21/28 December 2006| doi: 10.1038/nature05414
[3] Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2010 Jan; 26(1):5-11.
[4] Y Claire Wang et.al. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011

Indirect Regulation Pathway Design

In a cell, total amount of ATP, ADP and AMP remains constant. Low glucose concentration results in high activity of adenylate cyclase converting ATP into cAMP, who binds and converts cAMP receptor protein (abbreviated as CRP) to DNA-binding configuration. Conversely, when glucose concentration gets high, more ATP and less cAMP will be produced, resulting in low DNA-binding activity of CRP.

We embed gene cI of lambda phage downstream promoter PcstA ( BBa_K118011 ) activated by the binding of CRP, and genes of cellulose synthesis respectively downstream the promoter BBa_R0051 repressed by protein cI. In this way ,we construct an indirect regulation pathway with sensus glucose, transcription activator CRP and transcription repressor cI. If the device works as supposed, cellulose production will be increased following the elevation of glucose concentration, and vice versa. For more information, click Here .

Direct Regulation Pathway Design

Although the indirect regulation pathway was tested effective, we went on attempting a more compact and widely useful direct regulation design. Hence we modified a constitutive promoter ( BBa_J23119 ) to CRP repressible ones. We have established a new technical standard for our strategy of repressible promoter design (for more information, click on Standard ), but we shall focus on the design itself now.

We designed promoter Pcar( BBa_K861171 ) based on promoter BBa_J23119, inserting CRP-binding site to overlap on six base pairs with promoter -10 region. Since steric hindrance of CRP dimer blocks the function of -10 region, genes downstream will be repressed when glucose concentration is low. That is, most CRP appears in DNA-binding configuration. The repressive effect is undermined when glucose concentration increases. Accordingly, we changed CRP from an activator to a repressor, simplifying the device with potential advantages of higher sensibility and efficiency. As experimental results show, promoter Pcar works as we expect. For more information, please click Here .