Team:Tsinghua-D

From 2012.igem.org

(Difference between revisions)
 
(28 intermediate revisions not shown)
Line 21: Line 21:
font-family: Verdana, Arial, Helvetica, sans-serif;
font-family: Verdana, Arial, Helvetica, sans-serif;
}
}
-
body {
+
 
-
     background-color:transparent;
+
#flashContent {  
-
}
+
     width:100%;
-
.alpha {
+
    height:100%;
-
filter: Alpha(Opacity=50);
+
    font-weight:bolder;
-
}
+
}
 +
.STYLE20 {font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 10pt; font-weight: bold; }
</style>
</style>
</head>
</head>
<body>
<body>
-
<table width="965" border="0" align="left" >
+
 
 +
<div align="center" id="flashContent">
 +
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" width="840" height="600" id="welcome" align="middle">
 +
<param name="movie" value="https://static.igem.org/mediawiki/2012/c/c6/Welcome.swf" />
 +
<param name="quality" value="high" />
 +
<param name="bgcolor" value="#ffffff" />
 +
<param name="play" value="true" />
 +
<param name="loop" value="true" />
 +
<param name="wmode" value="transparent" />
 +
<param name="scale" value="showall" />
 +
<param name="menu" value="true" />
 +
<param name="devicefont" value="false" />
 +
<param name="salign" value="" />
 +
<param name="allowScriptAccess" value="sameDomain" />
 +
<!--[if !IE]>-->
 +
<object type="application/x-shockwave-flash" data="https://static.igem.org/mediawiki/2012/c/c6/Welcome.swf" width="840" height="600">
 +
<param name="movie" value="https://static.igem.org/mediawiki/2012/c/c6/Welcome.swf" />
 +
<param name="quality" value="high" />
 +
<param name="bgcolor" value="#ffffff" />
 +
<param name="play" value="true" />
 +
<param name="loop" value="true" />
 +
<param name="wmode" value="transparent" />
 +
<param name="scale" value="showall" />
 +
<param name="menu" value="true" />
 +
<param name="devicefont" value="false" />
 +
<param name="salign" value="" />
 +
<param name="allowScriptAccess" value="sameDomain" />
 +
<!--<![endif]-->
 +
<a href="http://www.adobe.com/go/getflash">
 +
<img src="http://www.adobe.com/images/shared/download_buttons/get_flash_player.gif" alt="Get Adobe Flash player" />
 +
</a>
 +
<!--[if !IE]>-->
 +
</object>
 +
<!--<![endif]-->
 +
</object>
 +
</div>
 +
 
 +
<table width="965" border="0" align="left" >
   <tr>
   <tr>
-
     <td width="965" class="alpha"><p align="center">&nbsp;&nbsp;&nbsp;<br>
+
     <td width="965" class="STYLE20" ><blockquote>
-
    &nbsp;&nbsp;<img src="https://static.igem.org/mediawiki/2012/8/8f/Home-picture1.gif" width="423" height="179"></p>    </td>
+
-
  </tr>
+
-
  <tr class="alpha">
+
-
    <td width="965" class="alpha"><blockquote>
+
       <blockquote>
       <blockquote>
-
         <p><span class="main">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;By creating a  term “Designable Thermoswitch”, we are trying to deliver an idea that metabolic  controllers responded to given temperatures can be designed.<br>
+
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br>
-
            <br>
+
           &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;In addition to exploration, explanation and prediction, the ultimate goal of science is creation.  In the field of life science, enthusiasm towards creation originates the synthetic biology.  During the last decade, numerous artificial biological networks had been made by rearranging the exited biological  macromolecules.  Recently, creation of the macromolecules inside biological networks emerges as a hotspot.  Because of structural simplicity and manipulation convenience, RNA becomes an ideal model for conducting such researches.  </a></p>
-
           &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Besides  explanation and prediction, the ultimate goal of science is creation. Here, we create several riboswitches as thermal metabolic controller. Pre-set a “switch-on”  temperature and a “switch-off” temperature, and <em>in silico</em> simulation will give the sequence of riboswitch that meet the requirement.</span></p>
+
-
        <p><span class="main">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A step further, we apply our “Designable Thermoswitches” th the field of fermentation industry. For a lone timeEngineers are trying to find a more economic and more automatic way to extract  fermentation product inside the engineered microorganism.  We align our “Designable Thermoswitches” and  gene of lysozyme together and put them into E.Coli to solve this problem. The reconstructed E.Coli will switch on the procedure of self-lysate at the given  temperature and release the fermentation product inside.</span></p>
+
       </blockquote>
       </blockquote>
     </blockquote></td>
     </blockquote></td>
   </tr>
   </tr>
   <tr>
   <tr>
-
     <td width="965" class="alpha">&nbsp;</td>
+
     <td class="STYLE20" >
 +
    <blockquote><blockquote>
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;This year, in iGEM 2012 competition, the first  software that designs temperature-sensing regulatory RNA - RNAThermo is  reported by iGEM Tsinghua-D Team.   Structural and functional verifications of the designed RNATs were  made.  RNAThermo’s potential application  in the fermentation industry is discussed:   the software provides a new method for achieving controlled expression of products in the fermentation industry.<br>
 +
          <br>
 +
        </p>
 +
    </blockquote></blockquote>
 +
</td>
   </tr>
   </tr>
</table>
</table>

Latest revision as of 22:47, 26 September 2012


无标题文档

      
      In addition to exploration, explanation and prediction, the ultimate goal of science is creation.  In the field of life science, enthusiasm towards creation originates the synthetic biology.  During the last decade, numerous artificial biological networks had been made by rearranging the exited biological macromolecules.  Recently, creation of the macromolecules inside biological networks emerges as a hotspot.  Because of structural simplicity and manipulation convenience, RNA becomes an ideal model for conducting such researches. 

      This year, in iGEM 2012 competition, the first software that designs temperature-sensing regulatory RNA - RNAThermo is reported by iGEM Tsinghua-D Team.  Structural and functional verifications of the designed RNATs were made.  RNAThermo’s potential application in the fermentation industry is discussed:  the software provides a new method for achieving controlled expression of products in the fermentation industry.