Team:Tokyo Tech/Experiment/C12

From 2012.igem.org

Revision as of 06:34, 13 October 2012 by Takuo (Talk | contribs)

bar



Contents

Construction of the 3OC12HSL-dependent 3OC6HSL production module

Fig2-1-3-1-5, Lux sender strain and Lux reporter strain

For construction of the 3OC12HSL-dependent 3OC6HSL production module, we firstly constructed a new part Plas-LuxI (BBa_K934012 ). Plas-LuxI cell is an engineered E.coli that contains a 3OC12HSL-dependent LuxI generator and a constitutive LasR generator. As the 3OC12HSL-dependent LuxI generator, we constructed a new Biobrick part Plas-LuxI (BBa_K934012 )by combining Plas promoter (BBa_K649000 ). and LuxI (BBa_K081008 ). As a constitutive LasR generator, we used Ptrc-LasR. By introducing Plas-LuxI and Ptrc-LasR into E.coli strain JM 2.300, we constructed Plas-LuxI cell. Then we performed a reporter assay by using Lux reporter cell to characterize the function of Plas-LuxI. As the negative control of 3OC6HSL production, we prepared 3OC6HSL non-producer cell (ΔP-LuxI cell) that contains, in addition to Ptrc-LasR, promoterless-LuxI (BBa_K081008) instead of Plas-LuxI (Fig2-1-3-1-5).

The ΔP-LuxI cell does not produce 3OC6HSL even though 3OC12HSL exist. The supernatants of the cultures of these modules were used as the inducer in the reporter assay (Fig2-1-3-1-6). We prepared four conditions as follow.

E) Culture containing Plas-LuxI cell without 3OC12HSL induction

F) Culture containing Plas-LuxI cell with 3OC12HSL induction

G) Culture containing ⊿P-LuxI cell without 3OC12HSL induction

H) Culture containing ⊿P-LuxI cell with 3OC12HSL induction

Fig2-1-3-1-6, How to perform 3OC12HSL-dependent 3OC6HSL production assay

Using the supernatant of the four culture conditions, we performed the reporter assay. In the reporter assay, we used a Lux reporter strain that contains Ptet-LuxR and Plux-GFP (BBa_K395100). Also, a reporter cell that expresses GFP constitutively and a reporter cell that does not express GFP were used as the positive control and the negative control, respectively.

Fig2-1-3-1-7, 3OC12HSL-dependent 3OC6HSL production



Fig2-1-3-1-7 shows fluorescence intensities by the reporter cells dependent on different conditions. Only when the supernatant of condition F was used, the fluorescence intensity of the Lux reporter cell increased while the supernatants of other three conditions did not affect. Comparing the results of the condition E and F, it can be said that with the induction of 3OC12HSL to Plas-LuxI, the fluorescence intensity of the Lux reporter cell increased by 112-folds. This result indicates that Plas-LuxI cell produced 3OC6HSL in response to 3OC12HSL induction by the function of Plas-LuxI (BBa_K934012) From this experiment, we confirmed that a new part Plas-LuxI (BBa_K934012) synthesized enough concentration of 3OC6HSL to induce the Lux reporter cell. [Protocol]

















Materials & Methods

1.Construction

A) Sender cells


pSB6A1-Ptet-LuxR / pSB3K3-Plux-LasI (JM2.300)…Plux-LasI cell

Positivefeedbackassay13tokyotech.png







pSB6A1-Ptrc-LasR / pSB3K3-Plas-LuxI (JM2.300)…Plas-LuxI cell

Positivefeedbackassay14tokyotech.png








pSB6A1-Ptet-LuxR / pSB3K3-ΔP-LasI (JM2.300)…ΔP-LasI cell

Positivefeedbackassay5tokyotech.png









pSB6A1-Ptrc-LasR / pSB3K3-ΔP-LuxI (JM2.300)…ΔP-LuxI cell

Positivefeedbackassay6tokyotech.png








B) Reporter cells


pSB6A1-Ptrc-LasR / pSB3K3-Plas-GFP (JM2.300)…Las reporter cell

Positivefeedbackassay7tokyotech.png








pSB6A1-Ptet-LuxR / pSB3K3-Plux-GFP (JM2.300)…Lux reporter cell

Positivefeedbackassay8tokyotech.png








pSB6A1-Ptrc-LasR / pSB3K3-ΔP-GFP (JM2.300)…negative control

Positivefeedbackassay9tokyotech.png








pSB6A1-Ptrc-LasR / pSB3K3-pλ-GFP (JM2.300)…positive control

Positivefeedbackassay10tokyotech.png








pSB6A1-Ptet-LuxR / pSB3K3-ΔP-GFP (JM2.300)…negative control

Positivefeedbackassay11tokyotech.png








pSB6A1-Ptet-LuxR / pSB3K3-pλ-GFP (JM2.300)…positive control

Positivefeedbackassay12tokyotech.png








2.Strain

JM2.300

Protocol

[Go to the project page "Construction of the 3OC12HSL-dependent 3OC6HSL production module"]

1. collect liquid culture

1.1 Prepare overnight culture of inducer cell at 37°C for 12hours.

1.2 Take 30μl of the overnight culture of inducer cell into LB(3ml) + antibiotics (Amp 50μg/ml + Kan 30μg/ml).(→fresh culture)

1.3 Incubate the flesh culture of inducer cell until the observed OD600 reaches around 0.50. Centrifuge the cell at 5000g, 25°C, 1 min, suspend it with 1ml LB + antibiotics (Amp 50μg/ml).

1.4 Take 30μl cell suspensions into LB(3ml) + antibiotics (Amp 50μg/ml + Kan 30μg/ml) + 5μM 3OC6HSL(3μl) and LB(3ml) + antibiotics (Amp 50μg/ml + Kan 30μg/ml) + DMSO(3μl).

1.5 Incubate the 3OC12HSL producer cells for another 4 hours at 37°C.

1.6 Centrifuge the 3OC12HSL producer cells at 9000g, 4°C, 1 min, and filter the cultured cells.

1.7 Dilute the filtrate by LB + antibiotics (Amp + Kan) in 1:30.

2 Reporter assay

2.1 Prepare overnight culture of reporter cell at 37°C for 12hours. 2.2 Take 30μl of the overnight culture of reporter cell into LB(3ml) + antibiotics (Amp 50μg/ml + Kan 30μg/ml). (→fresh culture)

2.3 Incubate the flesh culture of reporter cell until the observed OD600 reaches around 0.50, and gather the supernatant of culture of inducer cell.

2.4 Centrifuge the reporter cell at 5000g, 25°C, 1 min, and take it into LB + antibiotics (Amp 50μg/ml + Kan 30μg/ml).

2.5 Add 30μl samples of process 2.4 to filtrate + LB(3ml) + antibiotics (Amp 50μg/ml + Kan 30μg/ml) from process 1.7

3OC12HSL Plas
++
-+
+ -
- -


2.6 Induction of reporter cell for 4 hours at 37°C.

2.7 Flow cytometer measurements for GFP expression of reporter cell.

[Go to the project page "Construction of the 3OC12HSL-dependent 3OC6HSL production module"]