# Team:Technion/Safety

(Difference between revisions)
 Revision as of 14:50, 6 September 2012 (view source)Noa (Talk | contribs)← Older edit Revision as of 14:51, 6 September 2012 (view source)Noa (Talk | contribs) Newer edit → Line 5: Line 5: Biological hazard, also known as a biohazard, is an organism or a by-product from an organism that is harmful or potentially harmful to other living things, primarily human beings. There are four levels of biohazards, classified by the Center for Disease Control and Prevention (CDC) in the United States. A level 1 biological hazard poses the least risk while a level 4 poses the greatest. Biological hazard, also known as a biohazard, is an organism or a by-product from an organism that is harmful or potentially harmful to other living things, primarily human beings. There are four levels of biohazards, classified by the Center for Disease Control and Prevention (CDC) in the United States. A level 1 biological hazard poses the least risk while a level 4 poses the greatest. - ==List of organisms:== + ===List of organisms:=== 1.  Escherichia coli, Top10
1.  Escherichia coli, Top10
Line 22: Line 22: ===Bacterial Strains:=== ===Bacterial Strains:=== - Since we are using standard E.coli strains (TOP10, DH5α) which pose no risk to either individuals or to the environment the vector strains used in our project are all level 1 biohazard. Therefore, when considering the "hazard factor" in the Risk = probability x hazard equation, our project wouldn't raise any safety issues to the  researchers, the environment or to public safety, even in the case that the bacterial strains are released outside the lab. As for probability, we are taking the measures that are needed for level 1 biohazard, such as gloves, closed containers, and lab hygiene, to minimize the chance of the bacteria getting out of the lab . + Since we are using standard E.coli strains (TOP10, DH5α) which pose no risk to either individuals or to the environment the vector strains used in our project are all level 1 biohazard. Therefore, when considering the "hazard factor" in the Risk = probability x hazard equation, our project wouldn't raise any safety issues to the  researchers, the environment or to public safety, even in the case that the bacterial strains are released outside the lab. As for probability, we are taking the measures that are needed for level 1 biohazard, such as gloves, closed containers, and lab hygiene, to minimize the chance of the bacteria getting out of the lab.
+ + ===Bacteriophage lambda:=== + Current viral gene transfer vectors are based on animal viruses that have significant drawbacks for clinical use, including potential safety. Bacteriophage lambda represents a new class of vector that has a long history of safe human use with minimal safety concerns because it is a bacterial virus without the capability to productively infect mammalian cells, therefore the probability and hazard of an infection are both minimal.

# Safety First

Biological hazard, also known as a biohazard, is an organism or a by-product from an organism that is harmful or potentially harmful to other living things, primarily human beings. There are four levels of biohazards, classified by the Center for Disease Control and Prevention (CDC) in the United States. A level 1 biological hazard poses the least risk while a level 4 poses the greatest.

### List of organisms:

1. Escherichia coli, Top10
2. Escherichia coli, DH5α
3. Bacteriophage lambda

### List of Hazardous Materials:

1. Ethidium Bromide
2. Sodium Dodecyl Sulfate (SDS)
3. Chloroform

## Safety issues in terms of research, environment and public safety

All of the team members participated in lab and safety training given to us by our lab managers. They showed us how to use all of the instruments and materials in the lab in a way that wouldn't endanger us or the environment.

### Bacterial Strains:

Since we are using standard E.coli strains (TOP10, DH5α) which pose no risk to either individuals or to the environment the vector strains used in our project are all level 1 biohazard. Therefore, when considering the "hazard factor" in the Risk = probability x hazard equation, our project wouldn't raise any safety issues to the researchers, the environment or to public safety, even in the case that the bacterial strains are released outside the lab. As for probability, we are taking the measures that are needed for level 1 biohazard, such as gloves, closed containers, and lab hygiene, to minimize the chance of the bacteria getting out of the lab.

### Bacteriophage lambda:

Current viral gene transfer vectors are based on animal viruses that have significant drawbacks for clinical use, including potential safety. Bacteriophage lambda represents a new class of vector that has a long history of safe human use with minimal safety concerns because it is a bacterial virus without the capability to productively infect mammalian cells, therefore the probability and hazard of an infection are both minimal.