Team:SUSTC-Shenzhen-A/JC

From 2012.igem.org

(Difference between revisions)
m
Line 184: Line 184:
<img src="http://2012.igem.org/wiki/images/c/c9/Devidingline_side.jpg">
<img src="http://2012.igem.org/wiki/images/c/c9/Devidingline_side.jpg">
<p><a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/Notebook"><strong>Abstract</strong></a></p>
<p><a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/Notebook"><strong>Abstract</strong></a></p>
 +
<p><strong>Preparation</strong></p>
<p><a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/JC"><strong>Journal Club</strong></a></p>
<p><a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/JC"><strong>Journal Club</strong></a></p>
<p><a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/FP"><strong>Final Project</strong></a></p>
<p><a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/FP"><strong>Final Project</strong></a></p>
Line 194: Line 195:
<p>&nbsp;&nbsp;<a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/week6">week 6</a></p>
<p>&nbsp;&nbsp;<a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/week6">week 6</a></p>
<p>&nbsp;&nbsp;<a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/week7">week 7</a></p>
<p>&nbsp;&nbsp;<a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/week7">week 7</a></p>
-
<p><strong>comprehensive work</strong></p>
+
<p><strong>Comprehensive work</strong></p>
<p>&nbsp;&nbsp;<a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/week8">week 8</a></p>
<p>&nbsp;&nbsp;<a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/week8">week 8</a></p>
<p>&nbsp;&nbsp;<a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/week9">week 9~12</a></p>
<p>&nbsp;&nbsp;<a href="http://2012.igem.org/Team:SUSTC-Shenzhen-A/week9">week 9~12</a></p>

Revision as of 17:37, 26 September 2012

Journal Club

  

  For most of us weren't familiar with Synthetic Biology, we held a journal club. Everyone had a task of reading a paper, then all of us shared what we learned in the format of presentation. Here is a partial summary of all the members' presentation (including some classmates who were interested in iGEM but didn't join us at last).

  For more information and slides, please click here.

  

  Chen Yao: talked about bistability, which is a fundamental phenomenon in nature indicating a system consisting of two stable states. Bistability is very important in biology, especially in bacteriophage. A typical example is the lytic and lysogenic states of bacteriophage’s life circle.

  Pan Yidan: made a detailed tutorial on how to edit wiki. She gave an on-the-spot demo including creating, editing, formatting and adding links/images/files/reference on sandbox. Besides, she was responsible for loading all slides on wiki.

  Guo Jingyao: introduced two dimensional pattern formation which is about a hallmark of cooridinated cell behavior in both single and multicelluar organisms, typically involving cell to cell communication and intrcellular single processing. It might has wide application in biomaterial engineering and biosensing.

  Wang Jiale: gave an introduction to one of the primary term of synthetic biology, the biobricks. Biobricks, the standard biological parts are DNA sequences of defined structure and functions which share a common interface and are designed to be composed and incorporated into living cells such as E.coli to construct new biological systems.

  Wu Zishan: focused on the safety issues of synthetic biology. In her presentation, efforts were devoted to talking about the way to prevent potential terrorist from attacking with biological agents or toxins. She also talked about how to reduce or eliminate exposure of individuals to underlying hazardous agents.

  Zhou Mubing: presented a comprehensive introduction to another basic concept of synthetic biology, the Ribosome Binding Sites (RBS). RBS is a sequence of mRNA which used to lead the ribosome to the right position on mRNA during the beginning of the translation. His introduction included different characteristics, working mechanisms, design standard and assembly between prokaryotic cells and eukaryotic cells.

  Pan Deng: chose a rather complicate topic called Synthetic Oscillatory Networks, which described a concentration shifts phenomenon manipulated by negative feedback mechanism. This field may promote our new cognition of living organisms and show prospects in biosensing.

  Lv Chenchen: talked about synthetic biological counter in cells. Riboregulated transcriptional casade (RTC) counter is a stem-loop structure that counts the number of arabinose pulses. While the DIC counter is via the mechanism of FRT sites inversion.

  Zhang Junqiu: gave the presentation “Programmed population control by cell-cell communication and regulated killing” which introduced a quorum-sensing system that can control cell density at constant amount autonomously. The mechanism is similar to the natural circuit of Streptococcus pneumonia.

  Yang Xin: took efforts on the issue of “Engineered bacteriophage targeting gene networks as adjunvants for antibiotic therapy” which mainly concerned the increasing lag between drug development and the evolution of antibiotic resistance. Potential solutions expect phage to be modified to express lethal genes to cause cell death which might be a crucial step in reducing infections in the future.

  

  We also hold a brain-storming to collect our ideas .

  

Footbar.jpg