Team:SJTU-BioX-Shanghai/A

From 2012.igem.org

(Difference between revisions)
(Blanked the page)
Line 1: Line 1:
 +
{{Template:12SJTU_header}}
 +
<html>
 +
<head>
 +
<link rel="stylesheet" href="http://igem.bio-x.cn/home/style/contentslider.css" type="text/css"/>
 +
<script src="http://igem.bio-x.cn/home/style/contentslider.js" type="text/javascript" ></script>
 +
<style type="text/css">
 +
#toc, .toc {
 +
border: 0px;
 +
 +
padding: 2px;
 +
 +
}
 +
</style>
 +
</head>
 +
<body>
 +
<table class="mainouter" width="982" cellspacing="0" cellpadding="5" align="center">
 +
<tbody>
 +
<tr><td class="text" align="center">
 +
<table class="main" width="940" border="0" cellspacing="0" cellpadding="0"><tbody>
 +
<tr><td class="embedded">
 +
<div>
 +
<ul class="semiopaquemenu">
 +
<li><a href="/Team:SJTU-BioX-Shanghai" class="selected">Home</a></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Project">Project</a>
 +
<div class="menubar1"><ul class="semiopaquemenu2">
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Project" >Overview</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Project/project1" >Membrane Protein</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Project/project2" >Accelerater</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Project/project3" >Switch</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Project/model" >Modeling</a></li>
 +
</ul></div>
 +
</li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Data">Data</a></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Parts">Parts</a></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Team">Team</a>
 +
<div class="menubar2"><ul class="semiopaquemenu2">
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Team" >Overview</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Team/members" >Team Membrers</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Team/Gallary" >Gallary</a><br></li>
 +
</ul></div>
 +
</li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Notebook">Notebook</a>
 +
<div class="menubar3"><ul class="semiopaquemenu2">
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Notebook/progress" >Labwork Progress</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Notebook/log" >Lablog</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Notebook/protocol" >Protocol</a><br></li>
 +
</ul></div>
 +
</li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Consideration">Consideration</a>
 +
<div class="menubar4"><ul class="semiopaquemenu2">
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Consideration/human" >Human Practice</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Consideration/safety" >Safty</a><br></li>
 +
<li><a href="/Team:SJTU-BioX-Shanghai/Consideration/attr" >Attributions</a><br></li>
 +
</ul></div>
 +
</li>
 +
</ul>
 +
</div>
 +
 +
</td></tr>
 +
</tbody></table>
 +
</td></tr>
 +
 +
<tr><td align="center" class="outer" style="padding-top: 20px; padding-bottom: 20px">
 +
<table width="970" class="main" border="0" cellspacing="0" cellpadding="0"><tbody>
 +
<tr><td align="left"> <h2><b>Membrane Workshop</b></h2>
 +
 +
</td></tr>
 +
<table border="0" cellspacing="0" cellpadding="0" align="center"><tbody>
 +
<tr>
 +
<td valign="top" width="500">
 +
<div align="left">
 +
 +
<p>Our slogan: Cluster makes it faster; interaction alters the direction</p>
 +
<b>Motivation</b><br>
 +
<ol><li>There lacks compartment in prokaryotic cells, and thus engineered enzymes diffuse in the cytoplasm, which makes certain reactions proceed at a very low speed.
 +
</li><li>Divergent biochemical pathways commonly exist in all types of organisms, but it is extremely hard to artificially control and switch the directions of these reactions.
 +
</li></ol>
 +
<b>What to do</b><br>
 +
<p>We aim to attach enzymes involved in certain reactions to membrane proteins in order to fulfill goals stated below:</p>
 +
<ol><li>To accelerate reactions in certain biochemical pathway
 +
</li><li>To switch the biochemical pathway from one to the other through extracellular signal control
 +
</li></ol>
 +
</div>
 +
<td valign="top">
 +
<!--webbot bot="HTMLMarkup" startspan -->
 +
<div id="slider4" class="sliderwrapper">
 +
 +
<div class="contentdiv" style="background-image: url(/wiki/images/2/27/12SJTU_slidercontent1.jpg); display: block; z-index: 4; opacity: 1.0999999999999999; visibility: visible; background-position: 0% 50%; background-repeat: no-repeat no-repeat; ">
 +
</div>
 +
 +
<div class="contentdiv" style="background-image: url(/wiki/images/c/cb/12SJTU_slidercontent2.jpg); display: none; z-index: 3; opacity: 0.7; visibility: visible; background-position: 0% 50%; background-repeat: no-repeat no-repeat; ">
 +
</div>
 +
 +
<div class="contentdiv" style="background-image: url(/wiki/images/7/79/12SJTU_slidercontent3.jpg); display: none; z-index: 2; opacity: 0.4; visibility: visible; background-position: 0% 50%; background-repeat: no-repeat no-repeat; ">
 +
</div>
 +
 +
<div class="contentdiv" style="background-image: url(/wiki/images/5/51/12SJTU_slidercontent4.jpg); display: none; z-index: 1; opacity: 1.0999999999999999; visibility: visible; background-position: 0% 50%; background-repeat: no-repeat no-repeat; ">
 +
</div>
 +
 +
</div>
 +
 +
<div id="paginate-slider4" style="background:white">
 +
 +
<a href="" class="toc someclass selected" style="margin-left: 35px" rel="1">
 +
<img src="/wiki/images/4/47/12SJTU_slidercontent1_thumb.jpg"></a>
 +
<a href="" class="toc someclass" rel="2">
 +
<img src="/wiki/images/3/3f/12SJTU_slidercontent2_thumb.jpg"></a>
 +
<a href="" class="toc someclass" rel="3">
 +
<img src="/wiki/images/8/82/12SJTU_slidercontent3_thumb.jpg"></a>
 +
<a href="" class="toc someclass" rel="4">
 +
<img src="/wiki/images/4/4a/12SJTU_slidercontent4_thumb.jpg"></a>
 +
 +
</div>
 +
 +
<script type="text/javascript">
 +
 +
featuredcontentslider.init({
 +
id: "slider4",  //id of main slider DIV
 +
contentsource: ["inline", ""],  //Valid values: ["inline", ""] or ["ajax", "path_to_file"]
 +
toc: "markup",  //Valid values: "#increment", "markup", ["label1", "label2", etc]
 +
nextprev: ["", "Next"],  //labels for "prev" and "next" links. Set to "" to hide.
 +
revealtype: "mouseover", //Behavior of pagination links to reveal the slides: "click" or "mouseover"
 +
enablefade: [true, 0.1],  //[true/false, fadedegree]
 +
autorotate: [true, 3000],  //[true/false, pausetime]
 +
onChange: function(previndex, curindex){  //event handler fired whenever script changes slide
 +
//previndex holds index of last slide viewed b4 current (1=1st slide, 2nd=2nd etc)
 +
//curindex holds index of currently shown slide (1=1st slide, 2nd=2nd etc)
 +
}
 +
})
 +
 +
</script><!--webbot bot="HTMLMarkup" endspan i-checksum="36125" -->
 +
</td> </tr>
 +
</tbody></table>
 +
<table border="0" cellspacing="0" cellpadding="0" align="left"><tbody>
 +
<tr>
 +
<td>
 +
<h2><b>Membrane Engine (Accelerator)</b></h2>
 +
<p>As there is no compartment in prokaryotic cells, enzymes involved in a biochemical pathway diffuse all over the cytoplasm. Intermediates generated from one enzyme cannot be passed efficiently to the next due to spatial obstacles.  However, if we attach those enzymes to engineered membrane proteins which assemble together, the reactions are going to proceed much faster. </p>
 +
<p><i>Why do we attach enzymes to interacting protein domains and ligands that assemble together?</i> </p>
 +
<ul><li>Interacting proteins fused with enzymes can decrease the distance which intermediates must travel between enzymes, improving reaction speed. 
 +
</li></ul>
 +
<p><i>Why do we localize the enzymes to the membrane?</i></p>
 +
<ul><li>Interaction of proteins can only be effective within a small distance. Membrane localization of the enzymes can integrate those engineered proteins to 2-dimensional scale, which would absolutely increase the possibility that potential interacting domains and ligands dimerize.
 +
</li></ul>
 +
<h2><b>Membrane Switch</b></h2>
 +
<p>Now that we have built a device that can speed up a biological pathway. Our next goal is to control the pathway better---- to switch the direction of certain reactions, as shown in figure 3.</p>
 +
<p>Divergent biochemical pathways commonly exist in all types of organisms, and most of those reactions are stringently and internally controlled. However, it is extremely hard to artificially control and switch the directions of these reactions. Usually there are two different products produced in divergent reactions. Sometimes we want one product, and sometimes we want the other. Using our designed device, we can change the direction by introducing different extracellular signals. </p>
 +
</td>
 +
</tr>
 +
</tbody></table>
 +
<!--!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!-->
 +
</tbody></table>
 +
</td></tr>
 +
</tbody></table>
 +
<br>
 +
<div align="center" id="footer"> (c)  <a href="" target="_self">SJTU_BioX_iGEM2012</a> Powered by huanan1991</div>
 +
 +
</body>
 +
</html>

Revision as of 04:51, 17 August 2012

Membrane Workshop

Our slogan: Cluster makes it faster; interaction alters the direction

Motivation
  1. There lacks compartment in prokaryotic cells, and thus engineered enzymes diffuse in the cytoplasm, which makes certain reactions proceed at a very low speed.
  2. Divergent biochemical pathways commonly exist in all types of organisms, but it is extremely hard to artificially control and switch the directions of these reactions.
What to do

We aim to attach enzymes involved in certain reactions to membrane proteins in order to fulfill goals stated below:

  1. To accelerate reactions in certain biochemical pathway
  2. To switch the biochemical pathway from one to the other through extracellular signal control

Membrane Engine (Accelerator)

As there is no compartment in prokaryotic cells, enzymes involved in a biochemical pathway diffuse all over the cytoplasm. Intermediates generated from one enzyme cannot be passed efficiently to the next due to spatial obstacles. However, if we attach those enzymes to engineered membrane proteins which assemble together, the reactions are going to proceed much faster.

Why do we attach enzymes to interacting protein domains and ligands that assemble together?

  • Interacting proteins fused with enzymes can decrease the distance which intermediates must travel between enzymes, improving reaction speed.

Why do we localize the enzymes to the membrane?

  • Interaction of proteins can only be effective within a small distance. Membrane localization of the enzymes can integrate those engineered proteins to 2-dimensional scale, which would absolutely increase the possibility that potential interacting domains and ligands dimerize.

Membrane Switch

Now that we have built a device that can speed up a biological pathway. Our next goal is to control the pathway better---- to switch the direction of certain reactions, as shown in figure 3.

Divergent biochemical pathways commonly exist in all types of organisms, and most of those reactions are stringently and internally controlled. However, it is extremely hard to artificially control and switch the directions of these reactions. Usually there are two different products produced in divergent reactions. Sometimes we want one product, and sometimes we want the other. Using our designed device, we can change the direction by introducing different extracellular signals.