Team:Rutgers

From 2012.igem.org

(Difference between revisions)
m
 
(22 intermediate revisions not shown)
Line 1: Line 1:
 +
__NOTOC__
 +
{{:Team:Rutgers/Template/Header}}
 +
<html>
<html>
<head>
<head>
-
<title>Rutgers 2011 iGEM Team: Complex Circuits in Synthetic Biology</title>
+
<title>Rutgers 2013 iGEM Team: </title>
<style>
<style>
Line 12: Line 15:
body {
body {
-
/* IE10 Consumer Preview */  
+
/* IE10 Consumer Preview */  
-
background-image: -ms-linear-gradient(right, #F4ED13 0%, #2DE59E 100%);
+
background-image: -ms-radial-gradient(right top, circle farthest-corner, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
-
+
 
-
/* Mozilla Firefox */  
+
/* Mozilla Firefox */  
-
background-image: -moz-linear-gradient(right, #F4ED13 0%, #2DE59E 100%);
+
background-image: -moz-radial-gradient(right top, circle farthest-corner, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
-
+
 
-
/* Opera */  
+
/* Opera */  
-
background-image: -o-linear-gradient(right, #F4ED13 0%, #2DE59E 100%);
+
background-image: -o-radial-gradient(right top, circle farthest-corner, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
-
+
 
-
/* Webkit (Safari/Chrome 10) */  
+
/* Webkit (Safari/Chrome 10) */  
-
background-image: -webkit-gradient(linear, right top, left top, color-stop(0, #F4ED13), color-stop(1, #2DE59E));
+
background-image: -webkit-gradient(radial, right top, 0, right top, 1012, color-stop(0, #E8E685), color-stop(.6, #2EE0A2), color-stop(1, #0009E1));
-
+
 
-
/* Webkit (Chrome 11+) */  
+
/* Webkit (Chrome 11+) */  
-
background-image: -webkit-linear-gradient(right, #F4ED13 0%, #2DE59E 100%);
+
background-image: -webkit-radial-gradient(right top, circle farthest-corner, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
-
+
 
-
/* W3C Markup, IE10 Release Preview */  
+
/* W3C Markup, IE10 Release Preview */  
-
background-image: linear-gradient(to left, #F4ED13 0%, #2DE59E 100%);
+
background-image: radial-gradient(circle farthest-corner at right top, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
-
}
+
 
 +
}
</style>
</style>
Line 47: Line 51:
   <tr>
   <tr>
     <td width="69%" class="imgshadow2"><blockquote>
     <td width="69%" class="imgshadow2"><blockquote>
 +
 +
       <table width="100%" border="0" cellspacing="5" cellpadding="5">
       <table width="100%" border="0" cellspacing="5" cellpadding="5">
         <tr>
         <tr>
-
           <td colspan="2" td background="stripe.png"><h2> <span class="shadow">Abstract</span><br />
+
           <td width="66%" background="stripe.png" td><h2> <span class="shadow">Abstract</span><br />
           </h2></td>
           </h2></td>
           </tr>
           </tr>
 +
 +
         <tr>
         <tr>
          
          
-
           <td colspan="2" class="stuff"><p align="justify">The current fossil fuel-dependent economy drives a demand for sustainable energy resources. Although much effort has gone into the production of ethanol, other biofuels, such as butanol, are superior. Butanol has a higher energy content, is less volatile, and is safer to use than ethanol. To develop strains of bacteria that produce high levels of 1-butanol we have introduced the genes coding for a biochemical pathway from Clostridium acetobutylicum into a mutant E. coli strain that produces a high level of NADH. The combination of these chemical pathways is predicted to increase the level of butanol production. </p>
+
           <td class="stuff"><p align="justify">The current fossil fuel-dependent economy drives a demand for sustainable energy resources. Although much effort has gone into the production of ethanol, other biofuels, such as butanol, are superior.</p>
-
             <p align="justify">Our second project, the Bacterial Etch-a-Sketch, features a complex network of gene expression and repression that enables a lawn of bacteria to respond to 470nm light. This task presents many engineering challenges: the bacteria need to be sensitive enough to respond to a laser pulse, yet selective enough to use in ambient lighting. </p>
+
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB">Butanol</a> has a higher energy content, is less volatile, and is safer to use than ethanol. To develop strains of bacteria that produce high levels of 1-butanol we have introduced the genes coding for a biochemical pathway from <em>Clostridium acetobutylicum</em> into a mutant <em>E. coli</em> strain that produces a high level of NADH. The combination of these chemical pathways is predicted to increase the level of butanol production. </p>
-
             <p align="justify"> <a href="https://2011.igem.org/Team:Rutgers/Team"></a></p></td>
+
             <p align="justify">Our second project, the <a href="https://2012.igem.org/Team:Rutgers/BEAS">Bacterial Etch-a-Sketch</a>, features a complex network of gene expression and repression that enables a lawn of bacteria to respond to 470nm light. This task presents many engineering challenges: the bacteria need to be sensitive enough to respond to a laser pulse, yet selective enough to use in ambient lighting. </p>
 +
             </td>
           </tr>
           </tr>
 +
      </table>
 +
      <p>&nbsp;</p>
 +
  </blockquote>  </tr>
 +
 
 +
 
 +
 
 +
  <tr>
 +
    <td width="69%" class="imgshadow2"><blockquote>
 +
 +
 +
      <table width="100%" border="0" cellspacing="5" cellpadding="5">
 +
       
 +
         <tr>
         <tr>
-
           <td width="25%" background="stripe.png" td><h2 align="center" class="shadow">Biofuels in Bacteria</h2></td>
+
           <td width="33%" background="stripe.png" td><h2 align="center" class="shadow">Biofuels in Bacteria</h2></td>
-
           <td width="25%" background="stripe.png" td><h2 align="center" class="shadow">Bacterial Etch-a-Sketch</h2></td>
+
           <td width="33%" background="stripe.png" td><h2 align="center" class="shadow">Bacterial Etch-a-Sketch</h2></td>
           </tr>
           </tr>
         <tr>
         <tr>
-
           <td width="33%" valign="top" span class="stuff"><p align="justify">Genetically modified biological systems can provide direct industrial approaches to the production of commodity chemicals.  The ability to manipulate chemical pathways with the tools of synthetic biology has opened new doors in the renewable energy industry.  </p>
+
           <td width="33%" valign="top" span class="stuff"><p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB">Genetically modified biological systems can provide direct industrial approaches to the production of commodity chemicals.  The ability to manipulate chemical pathways with the tools of synthetic biology has opened new doors in the renewable energy industry.  </a></p>
-
             <p align="justify">This year, the Rutgers iGEM team has engineered a bacterial strain that can produce 1-butanol, a highly efficient biofuel that is able to generate up to 95% the energy produced by the combustion of gasoline.</p>
+
             <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB">This year, the Rutgers iGEM team has engineered a bacterial strain that can produce 1-butanol, a highly efficient biofuel that is able to generate up to 95% the energy produced by the combustion of gasoline.</a></p>
-
          <td width="33%" valign="top" span class="stuff"><p align="justify">The Etch-a-Sketch project aims to create a lawn of bacteria that can be drawn on with a laser pointer. This seemingly inconsequential task actually presents many interesting engineering challenges. </p>
+
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB">&gt; Biofuels in Bacteria &lt; </a></p>
-
             <p align="justify">In particular, the bacteria need to be extremely sensitive in order to respond to a short light pulse from a laser, but they still must be “selective” enough to use in ambient lighting.</p>
+
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB2">&gt; GENETIC CIRCUIT &lt; </a></p>
-
            <p align="justify">We have designed a novel genetic switch that we hope will tackle these problems. If our work will serve as a useful model for future projects that require massive signal amplification. In particular, researchers creating biosensors may find our work very helpful.</p>            </td>
+
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB3">&gt; RESULTS &lt; </a></p>
 +
            <td width="33%" valign="top" span class="stuff"><p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BEAS">The Etch-a-Sketch project aims to create a lawn of bacteria that can be drawn on with a laser pointer. This seemingly inconsequential task actually presents many interesting engineering challenges. </a></p>
 +
             <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BEAS">We have designed a novel genetic switch that we hope will tackle these problems. If our work will serve as a useful model for future projects that require massive signal amplification. In particular, researchers creating biosensors may find our work very helpful.</a></p>
 +
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BEAS">&gt; Bacterial Etch-a-Sketch &lt; </a></p>            </td>
           </tr>
           </tr>
       </table>
       </table>
       <p>&nbsp;</p>
       <p>&nbsp;</p>
-
      <table width="90%" border="0" cellspacing="0" cellpadding="0">
+
  </blockquote>  </tr>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
  <tr>
 +
    <td width="69%" class="imgshadow2"><blockquote>
 +
<table width="90%" border="0" align="center" cellpadding="0" cellspacing="0">
         <tr>
         <tr>
           <td><h2 class="shadow">Our Sponsors</h2></td>
           <td><h2 class="shadow">Our Sponsors</h2></td>
-
          </tr>
+
        </tr>
         <tr>
         <tr>
-
           <td><p>&nbsp;</p>            </td>
+
           <td><p><img src="https://static.igem.org/mediawiki/igem.org/3/3b/Screen_Shot_2012-10-03_at_10.49.00_PM.png" scr="https://static.igem.org/mediawiki/igem.org/3/3b/Screen_Shot_2012-10-03_at_10.49.00_PM.png"></p>            </td>
-
          </tr>
+
        </tr>
       </table>
       </table>
-
      <p>&nbsp;</p>
+
   </tr>
-
      <p>&nbsp;</p>
+
-
   </blockquote>  </tr>
+
</table>
</table>
<tr>
<tr>
-
  <td width="69%" class="imgshadow2"><blockquote>&nbsp;</blockquote></tr><td colspan="2" td background="chevpg.png">&nbsp;</td>
+
<td width="69%" class="imgshadow2"><blockquote>&nbsp;</blockquote></tr><td colspan="2" td background="chevpg.png">&nbsp;</td>
</body>
</body>
</html>
</html>

Latest revision as of 17:08, 7 August 2013

Rutgers 2012 iGEM Team: Biofuels in Biology

Rutgers 2013 iGEM Team:

Abstract

The current fossil fuel-dependent economy drives a demand for sustainable energy resources. Although much effort has gone into the production of ethanol, other biofuels, such as butanol, are superior.

Butanol has a higher energy content, is less volatile, and is safer to use than ethanol. To develop strains of bacteria that produce high levels of 1-butanol we have introduced the genes coding for a biochemical pathway from Clostridium acetobutylicum into a mutant E. coli strain that produces a high level of NADH. The combination of these chemical pathways is predicted to increase the level of butanol production.

Our second project, the Bacterial Etch-a-Sketch, features a complex network of gene expression and repression that enables a lawn of bacteria to respond to 470nm light. This task presents many engineering challenges: the bacteria need to be sensitive enough to respond to a laser pulse, yet selective enough to use in ambient lighting.

 

Biofuels in Bacteria

Bacterial Etch-a-Sketch

Genetically modified biological systems can provide direct industrial approaches to the production of commodity chemicals. The ability to manipulate chemical pathways with the tools of synthetic biology has opened new doors in the renewable energy industry.

This year, the Rutgers iGEM team has engineered a bacterial strain that can produce 1-butanol, a highly efficient biofuel that is able to generate up to 95% the energy produced by the combustion of gasoline.

> Biofuels in Bacteria <

> GENETIC CIRCUIT <

> RESULTS <

The Etch-a-Sketch project aims to create a lawn of bacteria that can be drawn on with a laser pointer. This seemingly inconsequential task actually presents many interesting engineering challenges.

We have designed a novel genetic switch that we hope will tackle these problems. If our work will serve as a useful model for future projects that require massive signal amplification. In particular, researchers creating biosensors may find our work very helpful.

> Bacterial Etch-a-Sketch <

 

Our Sponsors