Team:Penn State/Project

From 2012.igem.org

(Difference between revisions)
Line 1: Line 1:
-
<html>
+
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
-
 
+
<head>
<head>
-
<title>Penn State iGEM 2012</title>
+
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
-
<style>
+
<meta name="description" content="your description goes here" />
 +
<meta name="keywords" content="your,keywords,goes,here" />
 +
<meta name="author" content="Your Name" />
 +
 +
<title>andreas02 v3.0</title>
 +
<style type="text/css">
 +
body {background:#e0e0e0; color:#303030; font:76% tahoma, verdana, sans-serif; margin:0; padding:15px 0 0;}
 +
#container {
 +
background: #fff;
 +
margin: 0 auto 20px;
 +
padding: 5px 20px 20px;
 +
width: 800px;
 +
}
-
.Navigation{
+
/* Site title */
-
text-align:left;
+
#logo {
-
width:75px;
+
margin: 15px 0 0;
-
height:160px;
+
-
boarder:3px;
+
-
float:left;  
+
}
}
 +
#logo h1 a {border:none; color:#505050;}
 +
#logo h1 a:hover {border:none; color:#303030; text-decoration:none;}
 +
#logo p {font-size:1.3em;  color:#505050; margin:0 0 20px 0;}
-
</style>
+
/* Tags */
-
</head>
+
a {
 +
color: #303030;
 +
text-decoration: none;
 +
border-bottom-width: 1px;
 +
border-top-style: none;
 +
border-right-style: none;
 +
border-bottom-style: none;
 +
border-left-style: none;
 +
border-bottom-color: #505050;
 +
}
 +
a:hover {border-bottom:1px solid #505050; color:#303030; text-decoration:none;}
 +
a img {border:0;}
 +
h1 {font-size:2.2em; font-weight:400; margin:0 0 5px; padding:0;}
 +
h2 {
 +
font-size: 24pt;
 +
font-weight: bolder;
 +
margin: 0 0 12px;
 +
font-family: "Lucida Sans Unicode", "Lucida Grande", sans-serif;
 +
font-style: normal;
 +
color: #356C80;
 +
text-align: center;
 +
}
 +
h3 {font-size:1.4em; font-weight:400; margin:0 0 10px;}
 +
p {
 +
line-height: 1.5em;
 +
margin: 0 0 15px;
 +
text-align: left;
 +
color: #000;
 +
}
 +
ul,ol {margin:0 0 15px 15px; padding:0;}
 +
li {margin:0 0 3px 0;}
-
<div class="navigation">
 
-
<b> Navigation </b> <br/>
 
-
<a href="http://2012.igem.org/Team:Penn_State"; title="Penn State iGEM 2012 Home">Home </a><br/>
 
-
<a href="http://2012.igem.org/Team:Penn_State/Team"; title="Penn State iGEM 2012 Team">Team </a><br/>
 
-
<a href="http://igem.org/Team.cgi?year=2012"; title="Penn State iGEM 2012 Official Team Profile">Official Team Profile </a><br/>
 
-
<a href="http://2012.igem.org/Team:Penn_State/Projects"; title="Penn State iGEM 2012 Projects">Projects </a><br/>
 
-
<a href="http://2012.igem.org/Team:Penn_State/Parts"; title="Penn State iGEM 2012 Parts Submitted to the Registry">Parts Submitted to the Registry</a><br/>
 
-
<a href="http://2012.igem.org/Team:Penn_State/Modeling"; title="Penn State iGEM 2012 Modeling">Modeling </a><br/>
 
-
<a href="http://2012.igem.org/Team:Penn_State/Notebook"; title="Penn State iGEM 2012 Notebook">Notebook </a><br/>
 
-
<a href="http://2012.igem.org/Team:Penn_State/Safety"; title="Penn State iGEM 2012 Safety">Safety </a><br/>
 
-
<a href="http://2012.igem.org/Team:Penn_State/Attributions"; title="Penn State iGEM 2012 Attributions">Attributions </a><br/>
 
-
</div>
 
-
</html>
 
-
== '''Objective''' ==
 
-
The focus of this years' projects is to question the central dogma of biology. This is the commonly held belief that information flows from the ordering of the bases within a cell's DNA to the ordering of the bases within RNA. This information can then be translated to the order of Amino Acids that make up proteins. We are currently working on projects that question aspects of this dogma.
 
-
== Project 1: Codon Optimization ==
+
/* Toptabs menu */
-
=== Project Overview ===
+
#toptabs {font-size:.8em; margin:10px auto -13px; width:760px;}
-
<p>
+
#toptabs p {color:gray; text-align:right;}
-
All of the proteins around us, with few exceptions, are made up of 20 fundamental building blocks of life - Amino Acids. Different arrangements and combinations of these basic building blocks give us the diversity of proteins that we see. Messenger RiboNucleic Acids (mRNA) is in essence a "photocopy" of DNA that codes for a gene. mRNA carry codons, which are groups of three bases that code for a single amino acid. There are 64 possible combinations of codons (4 x 4 x 4 = 64), but some of these combinations are degenerate, so there can be more than one codon that codes for the Amino Acid.  
+
.toptab {background:#f0f0f0 url(../images/corner2.gif) top right no-repeat; border-bottom:1px solid #e0e0e0; color:gray; margin:0 0 0 4px; padding:4px 5px 3px; text-decoration:none;}
-
</p>
+
.toptab:hover {background:#fafafa url(../images/corner2.gif) top right no-repeat; border-bottom:1px solid #eaeaea; color:#505050; text-decoration:none;}
-
<p>
+
.activetoptab {
-
Proteins are assembled by ribosomes which read the mRNA and catalyze the binding between Amino Acids; however, they cannot read the codon code themselves and require the help of tRNA (transfer RNA). Each tRNA matches a single codon sequence and can only carry a single specific amino acid at a time. tRNA has complimentary bases to their respective codon sequences on the mRNA strand, and once the tRNA matches the sequence on the mRNA, the tRNA deposits the Amino Acids, which then bind together to form proteins.  
+
background: #fff url(../images/corner2.gif) top right no-repeat;
-
</p>
+
border-bottom: 1px solid #fff;
-
<p>
+
margin: 0 0 0 4px;
-
We have mentioned how these can be a number of codons that can code for the same Amino Acid, and subsequently, a number of tRNA molecules that can carry a given Amino Acid. In nature, and in many organisms, only a select few of these tRNA and codon combinations are used instead of all sequences that code for the same amino acid. This is called codon bias.
+
padding: 4px 5px 3px;
-
</p>
+
text-decoration: none;
-
<p>
+
color: #282C2D;
-
Our goal for this project is to see which codons are preferred, or biased. We also want to investigate if this bias can change over time, different circumstances, or stresses.
+
}
-
</p>
+
.activetoptab:hover {border-bottom:1px solid #fff; text-decoration:none;}
-
=== Experiments ===
+
/* Navitabs menu */
-
<p>
+
#navitabs {clear:both;}
-
We have been using a piece (vector) designed that includes a promoter, leader sequence, repeat codon sequence, mCherry, and GFP all inserted into the sPB1C3 vector for our project. We will use this construct to digest out the existing repeat codon sequence and then ligate in our designed repeat pieces. We designed repeat sequences for 9, 6, and 3 repeats of the codon. These repeats coding for Threonine and Alanine will be designed and ligated into the vector construct. Once we have the replace the repeat sequences, we will transform them into chemically competent cells and plate them. With these, we will prepare them for testing on the flow cytometer in order to test for GFP and mCherry intensity.
+
.navitab {background:#e0e0e0 url(../images/corner.gif) top right no-repeat; border-bottom:1px solid #fff; border-left:1px solid #fff; font-size:1.1em; margin:0 0 4px; padding:4px 8px; text-decoration:none;}
-
</p>
+
.navitab:hover {background:#d0d0d0 url(../images/corner.gif) top right no-repeat; border-bottom:1px solid #fff; text-decoration:none;}
-
[[File:PennState_CodonOptimization_MechanismDiagram_1.PNG | 808x248px | center | frame | alt=Codon Optimization Project mechanism | This is the Codon Optimization Project mechanism. ]]
+
.activenavitab {background:#505050 url(../images/corner.gif) top right no-repeat; color:#fff; font-size:1.1em; margin:0 0 5px; padding:4px 8px 5px; text-decoration:none;}
 +
.activenavitab:hover {color:#fff; text-decoration:none;}
-
=== Results ===
+
/* Header description area */
-
Coming soon…
+
#desc {
 +
clear: both;
 +
color: #fff; /* height:200px; */
 +
margin: 5px 0 15px;
 +
padding: 0 0 5px 0;
 +
background-image: url(../images/indexNav1.jpg);
 +
background-repeat: no-repeat;
 +
background-position: left bottom;
 +
text-align: left;
 +
font-size: 18pt;
 +
background-color: black;
 +
width: 800px;
 +
height: 230px;
 +
}
 +
#desc p {
 +
font-size: 10pt;
 +
line-height: 1.3em;
 +
padding: 0 0 0 15px;
 +
width: 325px;
 +
color: #FFF;
 +
}
 +
#desc h2 {
 +
color: #fff;
 +
padding: 15px 15px 0;
 +
text-align: left;
 +
text-size: 18pt;
 +
font-size: 16pt;
 +
}
 +
#desc a {border-color:#fff; color:#fff; text-decoration:none;}
 +
/* Main content */
 +
#main {
 +
border-right: 1px solid #d8d8d8;
 +
float: left;
 +
width: 620px;
 +
margin-top: 0;
 +
margin-right: 5;
 +
margin-bottom: 0;
 +
margin-left: 5;
 +
padding-top: 0;
 +
padding-right: 15px;
 +
padding-bottom: 0;
 +
padding-left: 0;
 +
}
-
== Project 2: Multidirectional Promoters ==
 
-
=== Project Overview ===
 
-
<p>
 
-
Before we can make a protein, we need an mRNA to carry the information about the order of the amino acids. But before we can make mRNA we need to know where the genes are in the DNA of a cell. Before RNA polymerase can make a copy it needs to bind to the DNA. This is assisted by a variety of factors, other proteins, that look for a specific sequence in the DNA. This sequence is called a promoter because it promotes the transcription of the DNA into RNA by the RNA polymerase. These sequences are generally upstream, or ahead, of a gene's coding sequence.
 
-
</p>
 
-
<p>
 
-
However, not all promoters cause RNA polymerase to transcribe downstream in the expected "forward direction". Some promoters can cause RNA polymerase to go in the opposite direction from what is expected, or go in both directions. This is what we are trying to find out; do different promoters go in different directions, and what is the directional preference of different promoters.
 
-
</p>
 
-
=== Experiments ===
 
-
Coming soon…
 
-
=== Results ===
 
-
Coming soon…
 
 +
/* Sidebar */
 +
#sidebar {float:right; width:150px;}
 +
#sidebar p {font-size:0.9em; line-height:1.3em; margin:0 0 15px;}
 +
#sidebar ul {margin:0 0 15px 0; padding:0;}
 +
#sidebar li {list-style:none;}
 +
ul.sidelink li {list-style:none; margin:0 0 3px; padding:0;}
 +
ul.sidelink li a{background:#f0f0f0 url(../images/corner.gif) top right no-repeat; border:none; display:block; margin:5px 10px 5px 0; padding:3px 4px 3px 8px; text-align:left; width:140px;}
 +
ul.sidelink li a:hover {background:#e0e0e0 url(../images/corner.gif) top right no-repeat; border:none; text-decoration:none;}
 +
 +
/* Footer */
 +
#footer {background:#fff; border-top:1px solid #d8d8d8; clear:both; margin:0; padding:0;}
 +
#footer a {color:gray;}
 +
#footer a:hover {color:#303030;}
 +
#footer p {color:gray; font-size:1.1em; line-height:1.3em; margin:15px 0 0; padding:0;}
 +
 +
/* Additional classes */
 +
.photo {background-color:#f0f0f0; border:1px solid #d8d8d8; margin:0 0 15px; padding:2px;}
 +
.timestamp {font-size:1.2em; color:#606060; margin:-12px 0 12px 0;}
 +
.right {margin:-8px 0 8px 0; text-align:right;}
 +
.block {
 +
padding: 10px;
 +
background-color: #EBEBEB;
 +
font-size: 12px;
 +
}
 +
.block a: {color: #000;
 +
border: none;
 +
text-decoration:none;
 +
}
 +
.block a:hover {
 +
color: #090;
 +
border: none;
 +
cursor: pointer;
 +
text-decoration:none
 +
}
 +
.hide {display:none;
 +
color: #000;
 +
}
 +
 +
#blenderAni {
 +
height: 250px;
 +
width: 400px;
 +
background-color: #999;
 +
margin-left: 135px;
 +
}
 +
#logoiGEM {
 +
height: 114px;
 +
width: 280px;
 +
float: right;
 +
background-image: url(../images/Sweatshirt_Logo.jpg);
 +
padding-bottom: 15px;
 +
background-repeat: no-repeat;
 +
}
 +
#logoPSU {
 +
height: 54px;
 +
width: 116px;
 +
background-image: url(../images/psuLogo.jpeg);
 +
}
 +
#boxLeft {
 +
background-color: #f0f0f0;
 +
text-align: left;
 +
float: left;
 +
height: 350px;
 +
width: 188px;
 +
margin-top: 10px;
 +
margin-right: 16px;
 +
margin-bottom: 10px;
 +
}
-
== Project 3: Multiple Start Codons ==
+
#boxRight {
-
=== Project Overview ===
+
background-color: #f0f0f0;
-
<p>
+
text-align: left;
-
mRNA is the molecule that carries information about the sequence of amino acids in a protein. However, much like the lines on a sheet of paper, the protein coding sequence of an mRNA molecule does not start right at the beginning, or top of the page. Instead, once the mRNA is bound by a ribosome, a start codon must first be read before the protein can be translated. This start codon is generally AUG, or Methionine.
+
float: left;
-
</p>
+
height: 350px;
-
<p>
+
width: 188px;
-
Once this start codon in read the ribosome will continue reading and building the polypeptide (protein) until a stop codon is reached. But what happens if you have two AUG codons close together? That is the question we are attempting to answer.  
+
margin-top: 10px;
-
</p>
+
margin-right: 5px;
-
<p>
+
padding-bottom: 10px;
-
We are trying to understand what happens when there are two start codons very close together, but out of frame. Out of frame refers to how the ribosome reads the mRNA. Remember those codons and how they are groups of three bases on the mRNA? The reading frame refers to which group of three. If you start at one base and read the bases in groups of three from that point on, that is one frame of reference. If you then move your start point ahead one base, then you are reading in a new reading frame. If you advance you starting point one more base, that is the third reading frame. If you advance it again you are now back in your first reading frame, but you have skipped the first codon. We are looking into what happens when you have multiple start codons close together, but in different reading frames. Which frame will be preferred?
+
margin-bottom: 10px;
-
</p>
+
-
=== Experiments ===
+
}
-
Coming soon…
+
 
-
=== Results ===
+
.mscProj {
-
Coming soon…
+
font-family: Verdana, Geneva, sans-serif;
 +
font-size: 16px;
 +
color: #333;
 +
background-color: #FF9;
 +
text-align: center;
 +
padding-top: 5px;
 +
padding-right: 8px;
 +
padding-bottom: 5px;
 +
}
 +
.biDirProj {
 +
font-family: Verdana, Geneva, sans-serif;
 +
font-size: 16px;
 +
background-color: #69F;
 +
color: #333;
 +
text-align: right;
 +
padding-top: 5px;
 +
padding-right: 5px;
 +
padding-bottom: 5px;
 +
}
 +
.codOptProj {
 +
font-family: Verdana, Geneva, sans-serif;
 +
font-size: 16px;
 +
color: #333;
 +
background-color: #F99;
 +
text-align: center;
 +
padding-top: 5px;
 +
padding-right: 0px;
 +
padding-bottom: 5px;
 +
}
 +
 
 +
 
 +
#boxCenter {
 +
background-color: #f0f0f0;
 +
text-align: left;
 +
float: left;
 +
height: 350px;
 +
width: 190px;
 +
margin-top: 10px;
 +
margin-right: 16px;
 +
margin-bottom: 10px;
 +
padding-bottom: 5px;
 +
}
 +
.readmore {
 +
font-family: Tahoma, Geneva, sans-serif;
 +
font-size: 12px;
 +
color: #333333;
 +
text-align: right;
 +
}
 +
</style>
 +
</head>
 +
 
 +
<body>
 +
<div id="container">
 +
  <div id="logoiGEM"></div>
 +
  <div id="logoPSU"></div>
 +
  <div id="navitabs">
 +
    <h2 class="hide">Sample navigation menu:</h2>
 +
    <a class="navitab" href="http://2012.igem.org/Team:Penn_State">Home</a><span class="hide"> | </span> <a class="navitab" href="http://2012.igem.org/Team:Penn_State/Team">Team</a><span class="hide"> | </span> <a class="activenavitab" href="#">Projects</a><span class="hide"> | </span> <a class="navitab" href="http://2012.igem.org/Team:Penn_State/Parts">Parts</a><span class="hide"> | </span> <a class="navitab" href="#">Modeling </a><span class="hide"> | </span> <a class="navitab" href="http://2012.igem.org/Team:Penn_State/Notebook">Notebook</a><span class="hide"> | </span> <a class="navitab" href="http://2012.igem.org/Team:Penn_State/Safety">Other</a> </div>
 +
  <div id="desc">
 +
    <h2>Team Projects</h2>
 +
    <p>Utilizing synthetic biology cloning techniques, the Penn State iGEM team has designed three genetic constructs that test the most basic assumptions of molecular biology. While each of the individual projects looks at a different aspect of the mantra, they all come together under the umbrella of Questioning the Central Dogma of Molecular Biology.</p>
 +
    <p class="right"><a href="#">Possible Link</a> &raquo;</p>
 +
  </div>
 +
  <div id="main">
 +
    <div class="mscProj" id="boxLeft"><span class="mscProj">Multiple Start Codons</span></span>
 +
      <p>    
 +
      <p>    
 +
      <p>     
 +
      <p>     
 +
      <p class="block">mRNA strands should have only one recognized start codon. What happens when multiple start codons are introduced in translation?<p class="readmore">read more...                                
 +
      </div>
 +
    <div class="biDirProj" id="boxCenter"><span class="biDirProj">BidirectionalPromoters</span><p>  
 +
      <p>    
 +
      <p>     
 +
      <p>     
 +
      <p class="block">Promoters usually initiate translation in one direction. Which promoters promote both foward and reverse on the mRNA strand? <p class="readmore">read more...
 +
      </div>
 +
    <div class="codOptProj" id="boxRight"><span class="codOptProj"> --Codon Optimization</span>
 +
      <p>   
 +
      <p>     
 +
      <p>     
 +
      <p>     
 +
      <p class="block">Each organism has a preferred sequence for each amino acid. What happens when the cell is overloaded by one amino acid codon?<p class="readmore">read more...  
 +
      </div>
 +
    <h2>&nbsp;</h2>
 +
  </div>
 +
  <div id="sidebar">
 +
    <h3>Check these Out!</h3>
 +
    <ul class="sidelink">
 +
      <li><a href="#">Judging Criteria</a></li>
 +
      <li><a href="#">Parts</a></li>
 +
      <li><a href="#">Human Practices</a></li>
 +
    </ul>
 +
    <h3>Picture Gallery</h3>
 +
    <img class="photo" src="../images/test.jpg" height="100" width="130" alt="" />
 +
    <h3>Possible Links:</h3>
 +
    <ul>
 +
      Possible Links
 +
      <li><a href="#">Possible Link</a></li>
 +
    </ul>
 +
  </div>
 +
  <div id="footer">
 +
    <p><strong>&copy; Hannah Jepsen-Burger<a href="#"></a></strong> | Follow us on Twitter<a href="#"></a></p>
 +
  </div>
 +
</div>
 +
<!-- InstanceEndEditable -->
 +
</body>
 +
<!-- InstanceEnd --></html>

Revision as of 02:17, 2 October 2012

andreas02 v3.0

Team Projects

Utilizing synthetic biology cloning techniques, the Penn State iGEM team has designed three genetic constructs that test the most basic assumptions of molecular biology. While each of the individual projects looks at a different aspect of the mantra, they all come together under the umbrella of Questioning the Central Dogma of Molecular Biology.

Possible Link »

Multiple Start Codons

mRNA strands should have only one recognized start codon. What happens when multiple start codons are introduced in translation?

read more...

BidirectionalPromoters

Promoters usually initiate translation in one direction. Which promoters promote both foward and reverse on the mRNA strand?

read more...

--Codon Optimization

Each organism has a preferred sequence for each amino acid. What happens when the cell is overloaded by one amino acid codon?

read more...