Team:NYMU-Taipei/ymiq3.html

From 2012.igem.org

(Difference between revisions)
(Created page with "<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>NYMU iGEM</title> <link href="http://www.royals.co...")
Line 78: Line 78:
       <div id="ymi_left_column">
       <div id="ymi_left_column">
  <div class="text_area" align="justify">
  <div class="text_area" align="justify">
-
<div class="title">Methods</div>
+
<div class="title">Measurements</div>
<div align="left">
<div align="left">
-
   <p><span class="subtitle">Resistance of Synechococcus SP. PCC 7002 to 3 - (3,4-dichlorophenyl) - 1,1 – dimethylurea (DCMU)</span></p>
+
   <p><span class="subtitle">The effect of sodium sulfide on Synechococcus SP. PCC 7942 growth rate</span></p>
</div>
</div>
<div align="left">
<div align="left">
-
   <p>From the previous research, we discovered that the concentration of 3 - (3,4 - dichlorophenyl) - 1,1 – dimethylurea (DCMU) must be adjusted to meet our requirement. Under certain DCMU concentration, the presence of sulfide would be extreme decisive condition which determines whether the colonies live or die. In this experiment, DCMU is diluted with A2 medium to explore the relationship between DCMU concentration and cell growth. Sodium sulfide is added to the experimental group and its initial concentration is controlled to 10 mM. <br />
+
   <p>After thoroughly examined the ability of sqr in Synechococcus SP. PCC 7002, we planned to conduct a series of similar experiments on Synechococcus SP. PCC 7942. Except for the cultivation medium, other growing conditions remained the same. Instinctively, the strain expressing sqr should grow better than the wile type strain.<br />
 +
    <br />
    
    
    
    
-
   <div class=out style='text-align:center'><img src="https://static.igem.org/mediawiki/2012/c/cb/Ymiq3.gif" width="538" height="190" border="0" align="center"  /><br />
+
   <div align="left">
-
    DCMU structure and its mechanism on photosynthesis<br />
+
    <p><span class="subtitle">DCMU concentration and cell growth</span></p>
-
     http://en.wikipedia.org/wiki/File:Diuron.png <br />
+
</div>
-
    <br />
+
    <p>This experiment is similar to the second one of Synechococcus SP. PCC 7002 testing series. The main idea was to find the suitable DCMU concentration for Synechococcus SP. PCC 7942. As a matter of fact, both wild type and sqr expressing strain are used in the experiment.  <br />
-
  </div>
+
      <br />
-
      
+
    <div align="left">
 +
      <p><span class="subtitle">Sulfide concentration and the growth of sqr expressing strain Synechococcus SP. PCC 7942</span></p>
 +
</div>
 +
     <p>It was expected that  SQR expressing strain and wild type counterpart would have different growth  rate under the presence of sulfide compounds. Though sulfide is naturally toxic  to <em>Synechococcus SP. PCC 7942</em>, the  strain with sqr should be able to metabolize sulfide and therefore prosper. As  the result, we analyze H2S amount to detect whether sqr gene work or not.  Therefore, we perform Chemical microvolume  turbidimetry method to detect H2S concentration (see <strong>Sulfur Oxide Terminator part</strong>)<br />
 +
      <br />
 +
     </p>
     <div align="left">
     <div align="left">
-
  <p><span class="subtitle">Sodium sulfide concentration and cell growth</span></p>
+
      <p><span class="subtitle"> Sulfide oxidation in Escherichia coli expressing sulfide-quinone reductase gene</span></p>
</div>
</div>
-
    <p>From the previous studies, it is suggested that <em>Synechococcus SP. PCC 7002 </em>is able to metabolize sulfide compounds. We took advantage of  the results in our last experiment and adjusted the concentration of DCMU to an  appropriate degree. Since sulfide would become the main reducing energy for photoassimilation  under the effect of DCMU, we believe the more sulfide concentration in the  wells, the better cell growth would be observed.</p>
+
 
-
      <div class=out style='text-align:center'><span class="out" style="text-align:center"><img src="https://static.igem.org/mediawiki/2012/c/c3/Ymiq4.png" width="573" height="278" border="0" align="center"  /></span><br />
+
Repots have it that Escherichia coli can express functional sulfide-quinone reductase (SQR). Therefore, we slightly adjusted the previous experiment and applied to the SQR gene from Synechococcus SP. PCC 7002. With methylene blue method, we would test the efficiency of SQR sulfide oxidation. Since such method involved in measurement of optical density, it is more appropriate to perform such experiment on colorless bacteria instead of engineered cyanobacteria strain.  
-
  </div>
+
 
 +
<br />
 +
<br />
</div>
</div>

Revision as of 09:49, 18 October 2012

NYMU iGEM

Measurements

The effect of sodium sulfide on Synechococcus SP. PCC 7942 growth rate

After thoroughly examined the ability of sqr in Synechococcus SP. PCC 7002, we planned to conduct a series of similar experiments on Synechococcus SP. PCC 7942. Except for the cultivation medium, other growing conditions remained the same. Instinctively, the strain expressing sqr should grow better than the wile type strain.

DCMU concentration and cell growth

This experiment is similar to the second one of Synechococcus SP. PCC 7002 testing series. The main idea was to find the suitable DCMU concentration for Synechococcus SP. PCC 7942. As a matter of fact, both wild type and sqr expressing strain are used in the experiment.

Sulfide concentration and the growth of sqr expressing strain Synechococcus SP. PCC 7942

It was expected that SQR expressing strain and wild type counterpart would have different growth rate under the presence of sulfide compounds. Though sulfide is naturally toxic to Synechococcus SP. PCC 7942, the strain with sqr should be able to metabolize sulfide and therefore prosper. As the result, we analyze H2S amount to detect whether sqr gene work or not. Therefore, we perform Chemical microvolume turbidimetry method to detect H2S concentration (see Sulfur Oxide Terminator part)

Sulfide oxidation in Escherichia coli expressing sulfide-quinone reductase gene

Repots have it that Escherichia coli can express functional sulfide-quinone reductase (SQR). Therefore, we slightly adjusted the previous experiment and applied to the SQR gene from Synechococcus SP. PCC 7002. With methylene blue method, we would test the efficiency of SQR sulfide oxidation. Since such method involved in measurement of optical density, it is more appropriate to perform such experiment on colorless bacteria instead of engineered cyanobacteria strain.