Team:Lyon-INSA/microbialControl

From 2012.igem.org

(Difference between revisions)
Line 86: Line 86:
<p>In the above example of biofilm-induced pipe corrosion, while a significant part of the corrosion occurs on the outside of the pipe, it is estimated that more than half of the corrosion is due to microbial growth on the inner surface of pipelines. Internal and external metallic corrosion contributes significantly to the risk of oil and gas pipeline deterioration and failure (see below), causes well and reservoir souring and plugging, and results in billions of dollars in annual costs to the oil and gas industry.  
<p>In the above example of biofilm-induced pipe corrosion, while a significant part of the corrosion occurs on the outside of the pipe, it is estimated that more than half of the corrosion is due to microbial growth on the inner surface of pipelines. Internal and external metallic corrosion contributes significantly to the risk of oil and gas pipeline deterioration and failure (see below), causes well and reservoir souring and plugging, and results in billions of dollars in annual costs to the oil and gas industry.  
</p>
</p>
-
 
+
<img src="https://static.igem.org/mediawiki/2012/e/e2/Oilindus.gif" width="95%" style="border:5px solid white;
 +
margin-left:20px;margin-top:20px;vertical-align:top;"/>
</div>
</div>

Revision as of 21:18, 25 September 2012


Applications

The versatility of « Biofilm Killer »

“Biofilm Killer” is designed to meet several industrial needs, because although almost every industry has problems dealing with biofilm development, cleaning biofilms does not mean the same in the different industries.
These applications can be briefly categorized in three different needs :
completer ici !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!



Focus on Oil Industry

Oil industry faces with important and costly difficulties due to biofilm-related issues. These include, but are not limited to, pipeline and metallic structure corrosion, porosity clogging in the rock or the tubing, microbial souring, petroleum spoilage during storage. The main consequences of microbial at the global scale are several :
A reduced quality of the final product (microbial alteration), an increase in treatment costs (souring), the reduction of well production (souring, microbial alteration, clogging). Biofilm formation is involved in the corrosion of the metallic structures, including the oil-plateform, but most importantly the pipelines and tubing.

Biofilm-induced alteration will affect the structure, resulting in two effects :
The first one is the clogging of the tubing, which much like cholesterol deposit in our arteries, will reduce the available circulating space, reducing the flux of gas or oil that can be transporter in the pipe. Even small amounts of biofilm can negatively affect flow of hydrocarbons, as can be seen on the figure below in an experiment performed on gas fluxes in presence or absence of only 8% of biofilm coverage. As a consequence of biofilm formation, we can see that about 50% of the gas flux is lost (from Z. Augustinovic et al.).

The second is the anaerobic corrosion of the metal from the structure, which will be instrumental in establishing the biofilm and induce clogging, but will also fragilize the structures.

In the above example of biofilm-induced pipe corrosion, while a significant part of the corrosion occurs on the outside of the pipe, it is estimated that more than half of the corrosion is due to microbial growth on the inner surface of pipelines. Internal and external metallic corrosion contributes significantly to the risk of oil and gas pipeline deterioration and failure (see below), causes well and reservoir souring and plugging, and results in billions of dollars in annual costs to the oil and gas industry.

« Biofilm Killer »: a practical manual

Inserer texte (le nom du site web).
et encore du texte