Team:LMU-Munich/Data

From 2012.igem.org

(Difference between revisions)
Line 56: Line 56:
[[File:Auswertung Anderson promoters.png|thumb|right|400px|'''Fig. 1: Luminescence measurement of Anderson promoters in the reporter vector pSB<sub>''Bs''</sub>3C-''luxABCDE'''''. OD<sub>''600''</sub> (right), LUMI (center) and OD<sub>''600''</sub> per LUMI (left) depending on the time (h) are shown for two different clones (green/blue). Data derive from three independent experiments. Curves were fitted over each other (t=0, OD<sub>''600''</sub>=0,3) and smoothed by taking average of three neighboring values.]]
[[File:Auswertung Anderson promoters.png|thumb|right|400px|'''Fig. 1: Luminescence measurement of Anderson promoters in the reporter vector pSB<sub>''Bs''</sub>3C-''luxABCDE'''''. OD<sub>''600''</sub> (right), LUMI (center) and OD<sub>''600''</sub> per LUMI (left) depending on the time (h) are shown for two different clones (green/blue). Data derive from three independent experiments. Curves were fitted over each other (t=0, OD<sub>''600''</sub>=0,3) and smoothed by taking average of three neighboring values.]]
-
Eleven of the nineteen promoters of the [http://partsregistry.org/Part:BBa_J23100 '''Anderson collection'''] (J23100,J23101, J23102, J23103, J23106, J23107, J23113, J23114, J23115, J23117, J23118) were evaluated in the reporter vector pSB<sub>''Bs''</sub>3C-''luxABCDE'' from the BioBrickBox containing the ''lux'' operon as a reporter for promoter activity. The gene expression which correlates to the promoter activity leads to the expression of the ''lux'' operon with the luciferase. The luminescence which is produced by the luciferase can be measured with the plate reader (BioTek). Data derive from three undependant measurements. Curves were fitted over each other (t=0, OD<sub>''600''</sub>=0,3) and smoothed by taking average of three neighboring values. OD<sub>600</sub> values shown are plate reader units and about one third of the usual OD<sub>600</sub> values. All clones show a usual growth curves. The activity of the promoters raises during the pass from the transition to the stationary phase. This maximum (t=1h) reaches from 200Lumi/OD<sub>600</sub> (promoter J23115) to a maximum of 1500 Lumi/OD<sub>600</sub> for the strongest promoter (J23101). Afterwards the activity goes down to the beginning level (t=2h). The oscillation of luminescence in the beginning of the curves are due to the small OD<sub>600</sub> and do not mean a high promoter activity. The luminescence of one clone of the promoters J23107 and J23114 do not show activity where in future a second clone with promoter activity should be measured. In comparison to all the other evaluated ''Bacillus'' promoters these Anderson promoters showed a very low acitivity in ''B. subtilis''.
+
Eleven of the nineteen promoters of the [http://partsregistry.org/Part:BBa_J23100 '''Anderson collection'''] (J23100,J23101, J23102, J23103, J23106, J23107, J23113, J23114, J23115, J23117, J23118) were evaluated in the reporter vector pSB<sub>''Bs''</sub>3C-''luxABCDE'' from the BioBrickBox containing the ''lux'' operon as a reporter for promoter activity. The gene expression which correlates to the promoter activity leads to the expression of the ''lux'' operon with the luciferase. The luminescence which is produced by the luciferase can be measured with the plate reader (BioTek). Data derive from three undependant measurements (Fig. 1). Curves were fitted over each other (t=0, OD<sub>''600''</sub>=0,3) and smoothed by taking average of three neighboring values. OD<sub>600</sub> values shown are plate reader units and about one third of the usual OD<sub>600</sub> values. All clones show a usual growth curves. The activity of the promoters raises during the pass from the transition to the stationary phase. This maximum (t=1h) reaches from 200Lumi/OD<sub>600</sub> (promoter J23115) to a maximum of 1500 Lumi/OD<sub>600</sub> for the strongest promoter (J23101). Afterwards the activity goes down to the beginning level (t=2h). The oscillation of luminescence (Lumi/ OD<sub>600</sub> in the beginning of the curves are due to the small OD<sub>600</sub> and do not mean a high promoter activity. The luminescence of one clone of the promoters J23107 and J23114 do not show activity where in future a second clone with promoter activity should be measured. In comparison to all the other evaluated ''Bacillus'' promoters these Anderson promoters showed a very low acitivity in ''B. subtilis''.
To measure the activity not only with the ''lux'' reporter operon, four promoters of the Anderson collection were cloned into the reporter vector pSB<sub>''Bs''</sub>1C-''lacZ'' to do β galactosidase assays and then to compare the results of the strength of these promoters in ''B. subtilis''.  
To measure the activity not only with the ''lux'' reporter operon, four promoters of the Anderson collection were cloned into the reporter vector pSB<sub>''Bs''</sub>1C-''lacZ'' to do β galactosidase assays and then to compare the results of the strength of these promoters in ''B. subtilis''.  
-
[[File:Auswertung_plate_reader_andere_promotoren.png|thumb|right|400px|Fig. 2: Luminescence measurement of the constitutive ''Bacillus'' promoters P<sub>''liaG''</sub> and P<sub>''lepA''</sub> in the reporter vector pSB<sub>''Bs''</sub>3C-''luxABCDE''. OD<sub>''600''</sub> (right), LUMI (center) and LUMI per OD<sub>''600''</sub>  (left) depending on the time (h) are shown for two different clones (green/blue). Data come from three independent experiments. Curves were fitted over each other (t=0, OD<sub>''600''</sub>=0,3) and smoothed by taking average of three neighboring values.]]
+
[[File:Auswertung_plate_reader_andere_promotoren.png|thumb|right|400px|'''Fig. 3: Luminescence measurement of the constitutive ''Bacillus'' promoters P<sub>''liaG''</sub> and P<sub>''lepA''</sub> in the reporter vector pSB<sub>''Bs''</sub>3C-''luxABCDE'''. OD<sub>600</sub> (right), LUMI (center) and LUMI per OD<sub>''600''</sub>  (left) depending on the time (h) are shown for two different clones (green/blue). Data come from three independent experiments. Curves were fitted over each other (t=0, OD<sub>''600''</sub>=0,3) and smoothed by taking average of three neighboring values.]]
The '''constitutive promoters''' P<sub>''liaG''</sub> and P<sub>''lepA''</sub> were evaluated in the reporter vector pSB<sub>Bs</sub>3C-<i>luxABCDE</i> which contains the ''lux'' operon. Data derive from three undependant measurements. Curves were fitted over each other (t=0, OD<sub>''600''</sub>=0,3) and smoothed by taking average of three neighboring values. OD<sub>600</sub> values shown are plate reader units and about one third of the usual OD values. All clones show a usual growth curves. The activity of the promoters raises during the pass from the transition to the stationary phase. The second clone of the promoters P<sub>''lepA''</sub> and P<sub>''liaG''</sub> did not show any luminescence activity. In the beginning of the growth curve the activity of both promoters raise to their maximum. They show a similar behaviour in pertaining to the groth curve. P<sub>''liaG''</sub> has an activity maximum of about 100.000 Lumi/OD<sub>600</sub> during the pass from logarithmic to the stationary phase. P<sub>''lepA''</sub> shows an maximum of about 400.000 Lumi/OD<sub>600</sub>. Comparing these two consitutive promotersthe activity of P<sub>''lepA''</sub> is about four times higher than the activity of P<sub>''liaG''</sub>. In the late stationary phase the activity completely disappears.
The '''constitutive promoters''' P<sub>''liaG''</sub> and P<sub>''lepA''</sub> were evaluated in the reporter vector pSB<sub>Bs</sub>3C-<i>luxABCDE</i> which contains the ''lux'' operon. Data derive from three undependant measurements. Curves were fitted over each other (t=0, OD<sub>''600''</sub>=0,3) and smoothed by taking average of three neighboring values. OD<sub>600</sub> values shown are plate reader units and about one third of the usual OD values. All clones show a usual growth curves. The activity of the promoters raises during the pass from the transition to the stationary phase. The second clone of the promoters P<sub>''lepA''</sub> and P<sub>''liaG''</sub> did not show any luminescence activity. In the beginning of the growth curve the activity of both promoters raise to their maximum. They show a similar behaviour in pertaining to the groth curve. P<sub>''liaG''</sub> has an activity maximum of about 100.000 Lumi/OD<sub>600</sub> during the pass from logarithmic to the stationary phase. P<sub>''lepA''</sub> shows an maximum of about 400.000 Lumi/OD<sub>600</sub>. Comparing these two consitutive promotersthe activity of P<sub>''lepA''</sub> is about four times higher than the activity of P<sub>''liaG''</sub>. In the late stationary phase the activity completely disappears.

Revision as of 12:55, 17 September 2012

iGEM Ludwig-Maximilians-Universität München Beadzillus

Team-LMU Photo2.jpg

The LMU-Munich team is exuberantly happy about the great success at the World Championship Jamboree in Boston. Our project Beadzillus finished 4th and won the prize for the "Best Wiki" (with Slovenia) and "Best New Application Project".

IGEM HQ LMU prize.jpg

[ more news ]

Sporenfreunde