Team:LMU-Munich/Bacillus Introduction

From 2012.igem.org

(Difference between revisions)
Line 50: Line 50:
<br>
<br>
-
<p align="justify"> In general, bacteria can be divided into two groups that differ in essential characteristics: gram-positive and gram-negative. Escherichia coli is a model organism for the gram-negative bacteria. A model organism for the gram-positive microorganisms is ''B. subtilis'', which we work with. The natural habitat of ''B. subtilis'' is soil, so it is forced to adapt to environmental changes. Hence B. subtilis is very complex. There are many differentiations and survival strategies that ''B. subtilis'' can engages (Fig. 1): Due to its natural competence it can uptake DNA and integrate it into its genome. To be flexibel to the environment and move towards nutrients or avoid toxics it is motile with the aid of its peritrich flagella. There is even cannibalism as one differentation form. If the conditions get to bad for living cells, ''B. subtilis'' can form spores. These are very stable vehicles where bacteria are resistant towards e.g. desiccation, heat and pressure. If these spores sense better conditions they are able to germinate again.</p>
+
<p align="justify"> In general, bacteria can be divided into two groups that differ in essential characteristics: gram-positive and gram-negative. Escherichia coli is a model organism for the gram-negative bacteria. A model organism for the gram-positive microorganisms is ''B. subtilis'', which we work with. The natural habitat of ''B. subtilis'' is soil, so it is forced to adapt to environmental changes. Hence B. subtilis is very complex. There are many differentiations and survival strategies that ''B. subtilis'' can engage (Fig. 1): Due to its natural competence, it can uptake DNA and integrate it into its genome. To be flexibel to the environment and move towards nutrients or avoid toxics, it is motile with the aid of its peritrich flagella. There is even cannibalism as one differentation form. If the conditions get too bad for living cells, ''B. subtilis'' can form spores. These are very stable vehicles where bacteria are resistant towards e.g. desiccation, UV-light, heat and pressure. If these spores sense better conditions they are able to germinate again.</p>
Line 72: Line 72:
<br>
<br>
'''1) Transformation of ''B. subtilis'''''  
'''1) Transformation of ''B. subtilis'''''  
-
<br>As ''B. subtilis'' and ''E. coli'' are model organisms they have an established genetics. The advantage of ''B. subtilis'' is that it is naturally competent. So it is not complicated to conduct genetical manipulations. It can replicate exogenous DNA via an origin of replication on a plasmid as ''E. coli'' does, but there is a much more elegant way of bringing in exogenous DNA stretches. When flanked by homologous regions to the bacterial genome, it will integrate at high efficiency via homologous recombination at this locus and furthermore be replicated with the genome. This has the advantage that if comparing different variables, not only the enviroment is always the same, but also the copy number is from cell to cell and from strain to strain the same, which is not always the case for replicative plasmids. This integrative way of bringing in exogenous DNA was exploited by us when producing the BioBrick compatible ''Bacillus'' vectors. The comparision between these two ways of bringing in exogenous DNA is depicted in Fig. 2. For these reasons, in some cases ''B. subtilis'' can be the chassis of choice. Unfortunately, very few iGEM teams have worked with this model organism, and there is at this time no established BioBrick system to use ''B. subtilis'' as a chassis.</p>
+
<br>As ''B. subtilis'' and ''E. coli'' are model organisms, they have established genetics. The advantage of ''B. subtilis'' is that it is naturally competent. So it is not complicated to conduct genetical manipulations. It can replicate exogenous DNA via an origin of replication on a plasmid as ''E. coli'' does, but there is a much more elegant way of bringing in exogenous DNA stretches. When flanked by homologous regions to the bacterial genome, it will be integrated at high efficiency via homologous recombination at this locus and furthermore be replicated with the genome. This has the advantage that if comparing different variables, not only the enviroment is always the same, but also the copy number is from cell to cell and from strain to strain the same, which is not always the case for replicative plasmids. This integrative way of bringing in exogenous DNA was exploited by us when producing the BioBrick compatible ''Bacillus'' vectors. The comparision between these two ways of bringing in exogenous DNA is depicted in Fig. 2. For these reasons, in some cases ''B. subtilis'' can be the chassis of choice. Unfortunately, very few iGEM teams have worked with this model organism, and there is at this time no established BioBrick system to use ''B. subtilis'' as a chassis.</p>
<br>
<br>
<br>
<br>

Revision as of 23:15, 26 September 2012

iGEM Ludwig-Maximilians-Universität München Beadzillus

Bacillus in urban culture.jpg

The LMU-Munich team is exuberantly happy about the great success at the World Championship Jamboree in Boston. Our project Beadzillus finished 4th and won the prize for the "Best Wiki" (with Slovenia) and "Best New Application Project".

IGEM HQ LMU prize.jpg

[ more news ]

Sporenfreunde