Team:Grenoble/Biology/Network

From 2012.igem.org

(Difference between revisions)
Line 111: Line 111:
<li><b>[14]</b> <a href="http://www.ncbi.nlm.nih.gov/pubmed/18414488" target="_blank">Balagaddé F. K., Song H., Ozaki J., Collins C. H., Barnet M., Arnold F. H., Quake S. R., You L. (2008). A synthetic Escherichia coli predator-prey ecosystem. <i>Molecular Systems Biology</i>. 4:187.</a></li>
<li><b>[14]</b> <a href="http://www.ncbi.nlm.nih.gov/pubmed/18414488" target="_blank">Balagaddé F. K., Song H., Ozaki J., Collins C. H., Barnet M., Arnold F. H., Quake S. R., You L. (2008). A synthetic Escherichia coli predator-prey ecosystem. <i>Molecular Systems Biology</i>. 4:187.</a></li>
</ul>
</ul>
 +
</section>
 +
 +
<div class="index" style="width: 130px; position: fixed; top: 250px; right: 20px;">
 +
<center>Legend :</center>
 +
<br/>
 +
<div class="encadre" id="blue"> Get deeper into safety </div><br/>
 +
<div class="encadre" id="red"> Information you have to read</div><br/>
 +
<div class="encadre" id="green"> Explanation of methods</div>
 +
</div>
 +
</div>
</div>
</body>
</body>

Revision as of 19:39, 26 September 2012

iGEM Grenoble 2012

Project

Network details

Our system is divided in two modules:



The signaling module

The signaling module allows our bacteria strain to integrate the input signal = the presence of a pathogene.

You can find here the mathematical model and numerical simulation this module.


The idea behind this module comes from the iGEM London Imperial College 2010 Team's work on Parasight [1].

Staphylococcus aureus secretes the exfoliative toxin B [2] which cleaves a specific amino-acids sequence (Desmoglein 1). This specific sequence can be used as a linker between a membrane protein and a dipeptide.
Once S. aureus is present, the linker is cut by the toxin and the dipeptide is released.

The dipeptide binds an engineered receptor [3] [4] that consists of:
  • the extracellular part of Tap [5], a dipeptide receptor involved in the chemotaxism
  • the intracellular part of EnvZ [6], a histidine kinase involved in the osmoregulation

Once the dipeptide binds the Tap part [7], the intracellular EnvZ part allows the phosphorylation of OmpR [8] [9], which is a constitutively produced transcriptional activator.

OmpR phosphorylation allows the activation of the ompC promoter [10]. We introduced cyaA (that code for adenyl cyclase) downstream of this promoter.

Amplification module

The amplification module allows our bacteria to amplify the input signal and to produce an output signal = fluorescence.

As for the previous module you can read here our mathematical model and numerical simulation.


The activation of the ompC promoter allows the production of Adenyl cyclase [11]. Adenyl cyclase catalyses the conversion of ATP (Adenosine Tri-Phosphate) into cAMP (cyclic Adenosine Mono-Phosphate).


The binding of cAMP to CRP (cAMP Receptor Protein) leads to the production of AraC by activating the pmalT promoter [12].
In the presence of arabinose, AraC and cAMP-CRP, cooperatively activate the paraBAD promoter [13], thus forming an "AND" gate. This allows the production of:
  • Adenyl cyclase which reproduces cAMP, forming thus a positive amplification loop
  • GFP (Green Fluorescent Protein) = the output signal

Cell to cell communication module

When a bacterium detects S. aureus, it produces several molecules of GFP and even more cAMP. cAMP diffuses through the membrane and activates the amplification loop in neighbor bacteria [14], which triggers in turn the production of GFP and cAMP.
This leads to GFP production by the entire population, triggered by a single bacterium that has detected the pathogen in the first place:


References

Legend :

Get deeper into safety

Information you have to read

Explanation of methods