Team:Fudan Lux/project introduction

From 2012.igem.org

(Difference between revisions)
Line 249: Line 249:
<!-- post-thumb -->
<!-- post-thumb -->
-
<div class="post-thumbnail">
+
<div class="image">
-
<!-- meta -->
+
-
<ul class="meta">
+
<a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/nanotube" class="cover"><img src="https://static.igem.org/mediawiki/2012/9/92/Nanotubelogo.png"  alt="Feature image" style="width:596px"/></a>
-
<li><strong>Posted on</strong> Dec 27th 2011 </li>
+
-
<li><strong>By</strong> <a href="#">Ansimuz</a></li>
+
-
<li> <strong>Posted in</strong>
+
-
<div class="meta-tags">
+
-
<a href="#">Webdesign</a>
+
-
<a href="#">Code</a>
+
-
<a href="#">Photo</a>
+
-
</div>
+
-
</li>
+
-
</ul>
+
-
<!-- ENDS meta -->
+
-
<a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/nanotube" class="cover"><img src="img/dummies/596x270.gif"  alt="Feature image" /></a>
+
</div>
</div>
 +
<br>
<!-- ENDS post-thumb -->
<!-- ENDS post-thumb -->

Revision as of 21:53, 26 September 2012

NOVA

Project We have some really cool stuff to show you!

Project Biowave

As is known to all, negative feedback and time lag can cause oscillation in a pure physical system, such as sounds formed by oscillating air molecules and ripples produced via stirring water. What if the particles of wave are bacteria? In this project, we want to utilize a biological system with the properties of negative feedback and time-lapse to form a macroscopic wave-like pattern that could be visualized by the naked eye. Which the system is made by two parts: the light generator and the light sensor. When the light, which generated by the light generator, is strong enough that could be sensed by the light sensor. The sensor protein could repress the expression of light generator. This signal pathway, which based on light, makes the negative feedback. And the expression of light generator makes the time lag. We believe that with the limited spread of light on the colored plat medium, light output of the bacteria could make a biowave. This is the very first time that bacteria using light as an extracellular signal in synthetic biology. And the form of the oscillation pattern could help us explain a lot of biological problem, like the development of fingers and tones.

Read more

Nanotube

Feature image

The second project of Team Fudan-Lux is about constructing a brand-new biological model using a recently discovered cellular structure termed Tunneling Nanotubes(TNT) and bacteria containing the green fluorescence protein. By inducing and stabilizing TNTs between certain types of malignant tumor cells, a cellular network could be obtained. Then the bacteria containing GFP is introduced into the tumor cells by microinjection. By doing so, a new type of biological system is created. More importantly, what we want to study here, is the behavior of the injected bacteria within the tumor cells. Since TNTs formed between cells act as super highways for material transportation, bacteria thus can move from one cell to another via TNTs. Given the condition that bacteria would tend to choose the most suitable place for them to live in, in the least energy-consuming way, a distribution pattern thus can be obtained which have the characteristic of the least increase of entropy. By building such a model, we want to simulate certain types of problems in the real life that can’t be solved by simple computation, e.g. traffic jams between cities, and provide solutions to them.
Read more
All rights reserved. Tempalate Edit by Fudan-lux team Powered By Luiszuno.com