Team:Exeter/Applications

From 2012.igem.org

(Difference between revisions)
m
m
Line 139: Line 139:
         <p>Blood types are distinguished by the presence of their surface polysaccharides. Depending on which antigens are present some blood groups can only receive donations from their own group or other specific blood types according to their rarity. This drastically reduces the list of potential options. </p>
         <p>Blood types are distinguished by the presence of their surface polysaccharides. Depending on which antigens are present some blood groups can only receive donations from their own group or other specific blood types according to their rarity. This drastically reduces the list of potential options. </p>
-
<p>In the future we envisage a system where donor blood could be “masked” to display the properties of its intended acceptors blood. This would be achieved by creating a polysaccharide that could bind to the surface of donor blood with one end and via the other display the same properties required for the recipient, thus passing as the host blood type. We believe this would lead to a new <b>Universal Blood Donor Group</b> with the potential of replacing conventional methods.</p>
+
<p>In the future we envisage a system where donor blood could be “masked” to display the properties of its intended acceptors blood. This would be achieved by creating a polysaccharide that could bind to the surface of donor blood with one end and via the other display the same properties required for the recipient, thus passing as the host blood type. We believe this would lead to a new <b>Universal Blood Donor Group</b> with the potential of replacing conventional methods.</p> <br>
-
 
+
-
<p>And why stop at red blood cells? Could this method of “masking” cells be progressed to donor tissues and organs with the possibility of advancing to the transplant of entire body parts?</p><br>
+
              
              
         </a>
         </a>

Revision as of 11:06, 24 September 2012

Polysaccharides have a spectacular range of properties. These properties stem from the relationships between the chemical nature of the sugars within the polysaccharide, their arrangement within the polymer and the arrangement of the polymer itself. Polysaccharides appear in every corner of the natural world and have multiple applications ranging from protection to energy storage.

Not surprisingly humanity has taken advantage of their diversity and by doing so created a huge variety of uses within the medicinal, material and consumable sectors.




In this section we invite you to take a brief look at what could one day be possible if a system to design and build bespoke polysaccharides existed.


“It is not what we believe to be impossible that holds us back, but merely the limit to our imagination.”

Alex Clowsley, 2012.





M.Wisniewska et al: Biological properties of Chitosan degradation products: Polish Chitin Society: Monograph XII:149-156:2007.

P.Kumar et al: Chitin and Chitosan: Chemistry, properties and applications: J. Scientific & Ind Res: Vol.63: 20-31:2004.

J.Majtan et al: Isolation and characterization of Chitin from bumblebee: Int J. Bio Macromolecules: Vol.40: 237-241:2007.

K.Walters,Jr. et al: A nonprotein thermal hysteresis-producing Xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides: PNAS: Vol.106 No.48: 20210-20215: 2009.

G.Gomez et al: Marine derived polysaccharides for biomedical applications: chemical modification approaches: Molecules: Vol. 13:2069-2106:2008.

M.Kucharska et al: Potential use of Chitosan – based material in medicine: Polish Chitin Society: Vol. XV: 169-175:2010.

Z.Persin et al: Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of Materials-, Food-, and Health Care: Carbohydrate Polymers: Vol. 84, 1: 22-32: 2011.

A.Furth: Lipids and Polysaccharides in Biology: Issue 125 of Studies of Biology: ISBN 0713128054.