Team:Dundee/Biobricks

From 2012.igem.org

Revision as of 18:58, 26 September 2012 by Franksargent (Talk | contribs)

New Biobricks:

1. BBa_K895001 Salmonella Hcp protein. This biobrick encodes the Hcp protein (STM0279 or tssD). This is a key component of Type VI Secretion Systems and is often found in the cell supernatant so is commonly regarded as a secreted protein.

2. BBa_K895002 Salmonella VgrG protein. This biobrick is a gene encoding an important large protein thought to form the tip of the Type VI Secretion/Cell Puncturing device. VgrG (STM0289 or TssI) must have an extracytoplsmic localisation. This would be the initial point of contact between the Type VI Secretion System and any target cell.

3. BBa_K895003 Salmonella TtrRS two-component system. This biobrick encodes an 'inflammation biosensor'. The TtrS protein is a membrane-bound histidine kinase. The kinase senses extracellular tetrathionate levels (a compound produced in the gut when the inflammation process is induced during infection), which activates its autophosphorylation activity. The phosphate is passed on to TtrR, the DNA-binding response regulator, which can then activate transcription of at least one operon its native organism (Salmonella.

4. BBa_K895004 Salmonella Hcp fused to φCD27 endolysin. This biobrick encodes Hcp (from BBa_K895001) fused via an HA epitope tag to a synthetic endolysin based on that from a C. difficile bacteriophage (φCD27).

6. BBa_K895007 Salmonella TtrRS two-components system linked to a GFP reporter. Lysis To Kill is a game developed for the Android platform. The concept of the game was inspired by Splashback which was a Flash game developed for the Cartoon Network [1]. The original concept involved adding drops of 'goo' to a playing board in order to burst 'blobs', creating a cascade of bursts. The aim was to clear the playing board in as few clicks as possible. In a similar fashion, Lysis To Kill draws on the same game concept with a twist to mirror the iGEM project we have undertaken.

Improving and de-bugging old biobricks:

1. BBa_K895000 Escherichia coli tat constitutive promoter. You start the game with 10 clicks. You are in charge of the friendly, synthetically engineered E-coli cells (in green), and each time you click a cell it shrinks and eventually bursts. Your goal is to destroy all the C.diff cells with φCD27 endolysin, which is fired from your E.coli cells whenever they burst. Each level grants you an extra click, and points are awarded for every C.diff cell destroyed. Bonus points are awarded if you finish a level with a clear board. The game is free to download, and the full source code is provided.

2. BBa_K895006 Classic GFP-encoding gene cloned to RFC[10] standard in pSB1C3. You start the game with 10 clicks. You are in charge of the friendly, synthetically engineered E-coli cells (in green), and each time you click a cell it shrinks and eventually bursts. Your goal is to destroy all the C.diff cells with φCD27 endolysin, which is fired from your E.coli cells whenever they burst. Each level grants you an extra click, and points are awarded for every C.diff cell destroyed. Bonus points are awarded if you finish a level with a clear board. The game is free to download, and the full source code is provided.

3. BBa_K895007 Salmonella TtrRS two-components system linked to a GFP reporter. Lysis To Kill is a game developed for the Android platform. The concept of the game was inspired by Splashback which was a Flash game developed for the Cartoon Network [1]. The original concept involved adding drops of 'goo' to a playing board in order to burst 'blobs', creating a cascade of bursts. The aim was to clear the playing board in as few clicks as possible. In a similar fashion, Lysis To Kill draws on the same game concept with a twist to mirror the iGEM project we have undertaken.

Favourite Biobricks:

1. BBa_K895007 Salmonella TtrRS two-components system linked to a GFP reporter. Lysis To Kill is a game developed for the Android platform. The concept of the game was inspired by Splashback which was a Flash game developed for the Cartoon Network [1]. The original concept involved adding drops of 'goo' to a playing board in order to burst 'blobs', creating a cascade of bursts. The aim was to clear the playing board in as few clicks as possible. In a similar fashion, Lysis To Kill draws on the same game concept with a twist to mirror the iGEM project we have undertaken.

2. BBa_K895001 Salmonella Hcp protein. The predicted extracellular localisation of this protein makes it potentially useful for future projects. If secretion of the protein can be controlled and characterised then it could be fused to any number of reporters or other enzymes. The BBa_K895001 polypeptide can be produced stably in E. coli. Fusion proteins are also stable.

3. BBa_K895002 Salmonella VgrG protein. Lysis To Kill is a game developed for the Android platform. The concept of the game was inspired by Splashback which was a Flash game developed for the Cartoon Network [1]. The original concept involved adding drops of 'goo' to a playing board in order to burst 'blobs', creating a cascade of bursts. The aim was to clear the playing board in as few clicks as possible. In a similar fashion, Lysis To Kill draws on the same game concept with a twist to mirror the iGEM project we have undertaken.



Retrieved from "http://2012.igem.org/Team:Dundee/Biobricks"