Team:BostonU/Methodology

From 2012.igem.org

Revision as of 21:06, 1 October 2012 by THaddock (Talk | contribs)

BostonU iGEM Team: Welcome


Methodology



Making Destination Vectors and MoClo Parts
    Building Destination Vectors
      First, we PCR amplified the alpha lacZ fragment with primers designed to add both the MoClo fusion sites and type IIs restriction sites to it.

      The amplified products and the backbones where digested with SpeI and ligated together to generate the Destination Vectors (DV)s. We performed blue-white screening to select the correct DVs and selected the blue colonies for mini preps. These were sent for sequencing to verify the correct orientation of the MoClo sites and type IIS restriction sites.

      Level 0 DVs contain Chloramphenicol resistance on the backbone and a BsaI site followed by a Bpil site. Level 2 DVs contain Kanamycin resistance on the backbone and a Bpil site followed by a BsaI site. Level 3 DVs contain Ampicillin resistance on the backbone and a BsaI site followed by a Bpil site.

    PCR Strategies and Troubleshooting
      One of the crucial steps in converting BioBricks to MoClo is adding the fusion sites to all the parts: promoters, RBSs, genes and terminators. In our project, we utilized PCR amplification to insert the fusion sites into the parts sequence. However, this is not as simple as it may sounds. PCR is a sensitive technique that requires optimized conditions for each set of primers and templates used. Figuring out what were the conditions for each reaction we ran was a learning experience that we intend to share in this section.
      The first aspect to be considered is what kind of PCR is going to be utilized. For parts bigger than 50 bp: genes, terminators and some of the promoters we utilized amplification PCR and designed the forward and reverse primers to have the fusion tags in their 5’ end.

      For smaller parts: RBSs and J series promoters, our first approach was inverse PCRs, which have the primers oriented in the reverse direction of the usual orientation. The primers tags contain the fusion sites and the parts sequence that will anneal after the extension. The mechanism can be better understood by the diagram below:

      Unfortunately, we were not successful utilizing this method. The second approach we implemented was ligation PCR1 that consists in two primary PCRs that are then ligated together in a third PCR. For each of the primary PCRs we utilize one primer whose tag that contains the fusion sites and the part (B, C) and another regular primer to amplify the complementary strand (A, D). The third PCR is run with the outermost primer pair (A,D) as clarified by the diagram below:

      Besides determining the PCR strategy there was troubleshooting involved in the determination of the optimized conditions to run each PCR.
      We realized that reagents such as:  MgCl and DMSO can play a big role in optimizing the reaction and we often ran gradient PCR varying the concentrations of these reagents to achieve the best conditions.
      The amount of template added is very important as well. Too much template might lead to unspecific amplification while too little template may not be enough to obtain the desired PCR product.
      Also, determining the primers ideal annealing temperature required running temperature gradients PCRs,usually it is 2 C lower than the lowest melting temperature for the forward and reverse primers.
      Another aspect to take into account is the extension time that depends on the enzyme efficiency and the size of the PCR product. Extension time longer than necessary may lead to amplification of unspecific products, while short extension time may not be enough to amplify the product entire sequence.
      1 http://www.biot echniques.com/multimedia/archive/00036/BTN_A_04363BM04_O_36287a.pdf