Team:Arizona State/Problem

From 2012.igem.org

(Difference between revisions)
Line 9: Line 9:
<p>
<p>
-
Viewed as a minor inconvenience in the developed world, diarrhea can be a death sentence in developing countries. Diarrhea can be life threatening as it causes severe dehydration as a result of extensive fluid loss. An estimated 2.0 billion cases of diarrhea occur each year amongst children under five years of age. Of these cases, 1.5 million children die.  The major pathogens that most frequently cause acute childhood diarrhea cases are bacterial pathogens such as E. coli, Shigella, Campylobacter and Salmonella. The ASU iGEM team plans to develop an inexpensive way for communities to test the purity of water sources- and identify the specific pathogens in the water source- in efforts of reducing the incidence of childhood diarrhea and ultimately decreasing mortality rates. Existing biosensors for water-borne pathogens are either costly, unaccessible to developing countries, require large machinery to operate, difficult to use without training, and low throughput. For example, immunoassays, which uses antibodies specific for certain antigens on pathogenic diarrhea, have a good turnaround time. However, not all antigens have available antibodies that can be used for detection, and those antibodies that are available can be very costly.  
+
Viewed as a minor inconvenience in the developed world, diarrhea can be a death sentence in developing countries. Diarrhea can be life threatening as it causes severe dehydration as a result of extensive fluid loss. An estimated 2.0 billion cases of diarrhea occur each year amongst children under five years of age. Of these cases, 1.5 million children die.  The major pathogens that most frequently cause acute childhood diarrhea cases are bacterial pathogens such as E. coli, Shigella, Campylobacter and Salmonella. The ASU iGEM team plans to develop an inexpensive way for communities to test the purity of water sources- and identify the specific pathogens in the water source- in efforts of reducing the incidence of childhood diarrhea and ultimately decreasing mortality rates. Existing biosensors for water-borne pathogens are either costly, unaccessible to developing countries, require large machinery to operate, difficult to use without training, and not very reliable. For example, immunoassays, which uses antibodies specific for certain antigens on pathogenic diarrhea, have a good turnaround time. However, not all antigens have available antibodies that can be used for detection, and those antibodies that are available can be very costly.  
</font>
</font>
<br />
<br />

Revision as of 02:35, 4 October 2012

Detailed Problem Description


What is the problem we want to solve

Viewed as a minor inconvenience in the developed world, diarrhea can be a death sentence in developing countries. Diarrhea can be life threatening as it causes severe dehydration as a result of extensive fluid loss. An estimated 2.0 billion cases of diarrhea occur each year amongst children under five years of age. Of these cases, 1.5 million children die. The major pathogens that most frequently cause acute childhood diarrhea cases are bacterial pathogens such as E. coli, Shigella, Campylobacter and Salmonella. The ASU iGEM team plans to develop an inexpensive way for communities to test the purity of water sources- and identify the specific pathogens in the water source- in efforts of reducing the incidence of childhood diarrhea and ultimately decreasing mortality rates. Existing biosensors for water-borne pathogens are either costly, unaccessible to developing countries, require large machinery to operate, difficult to use without training, and not very reliable. For example, immunoassays, which uses antibodies specific for certain antigens on pathogenic diarrhea, have a good turnaround time. However, not all antigens have available antibodies that can be used for detection, and those antibodies that are available can be very costly.



Quantitative considerations

...What concentration of pathogens causes sickness?
...What specific design approaches did we take to try to reduce false positives, while making the biosensor effective?



Why are we doing this?

...what do we hope to accomplish/want to figure out?
...who are we doing this for? what do we care about? tie in to human practices and provide links
...what is our ultimate goal?



How we are doing it

...what are our methods?
...How is this different compared what others have done?
...what has already been tried?