Team:SEU O China/Model

From 2012.igem.org

(Difference between revisions)
Line 14: Line 14:
         <h2>Simulation</h2>
         <h2>Simulation</h2>
<ul>
<ul>
 +
    <li id="in">Introduction</li>
    <li id="li">Light Induce</li>
    <li id="li">Light Induce</li>
    <li id="au">Auto-differentiation</li>
    <li id="au">Auto-differentiation</li>
Line 30: Line 31:
<div id="col_left">
<div id="col_left">
-
<div class="content" id="licontent">
+
 
-
<h3>Light Induced System</h3>
+
<div class="content" id="incontent">
 +
<h3>System Simulation</h3>
<br>
<br>
</html>
</html>
'''Introduction'''
'''Introduction'''
 +
 +
In order to verify the availability and probable effect of our design scheme, simulation mathematical models based on Cellular Automata technique have been conducted.
 +
 +
In catering to our past experiment scheme, we have constructed two models as follows:
 +
*Light Sensing Model: use light to trigger the asymmetry process of the colony;
 +
*Movement Model: use more complicated pathways to induce the break of symmetry.
 +
 +
A cellular automaton is in nature a finite-state machine in discrete time as well as space studied in computability theory,mathematics, physics, complexity science, theoretical biology and microstructure modeling.
 +
 +
This model provides a significant reference to the appraise of realistic experiments by simulating the whole pattern changing process, which consists of division, movement, death and some relevant ones.
 +
 +
<html>
 +
<div class="clear"></div>
 +
</div>
 +
 +
<div class="content" id="licontent">
 +
<h3>Light Induced Model</h3>
 +
<br>
 +
</html>
 +
 +
'''Micro Model'''
 +
 +
To display the simulation results directly, we have constructed a micro model based on cellular automata. Each minimum spatial unit is able to hold up at most one cell, which can be characterized by a cellular automaton; Meanwhile, another property that wonders in every minimum spatial unit is the density of AHL, which relies on the density diffusion equation. The detailed cellular automata rules would be as follows.
 +
 +
a) Cell types
 +
 +
Each minimum spatial unit in this cellular automata model is able to hold up at most one cell. Cells can be divided into two types, normal cells(marked by green) and special cells(marked by red). Red cells are transferred from green cells by the trigger of light. The type of cells is denoted by ‘C’ as follows:
 +

Revision as of 13:51, 25 September 2012

header1
header2



Modeling






Simulation

  • Introduction
  • Light Induce
  • Auto-differentiation

Data Process

  • Parameter Estimates
  • Image Process

System Simulation


Introduction

In order to verify the availability and probable effect of our design scheme, simulation mathematical models based on Cellular Automata technique have been conducted.

In catering to our past experiment scheme, we have constructed two models as follows:

  • Light Sensing Model: use light to trigger the asymmetry process of the colony;
  • Movement Model: use more complicated pathways to induce the break of symmetry.

A cellular automaton is in nature a finite-state machine in discrete time as well as space studied in computability theory,mathematics, physics, complexity science, theoretical biology and microstructure modeling.

This model provides a significant reference to the appraise of realistic experiments by simulating the whole pattern changing process, which consists of division, movement, death and some relevant ones.

Light Induced Model


Micro Model

To display the simulation results directly, we have constructed a micro model based on cellular automata. Each minimum spatial unit is able to hold up at most one cell, which can be characterized by a cellular automaton; Meanwhile, another property that wonders in every minimum spatial unit is the density of AHL, which relies on the density diffusion equation. The detailed cellular automata rules would be as follows.

a) Cell types

Each minimum spatial unit in this cellular automata model is able to hold up at most one cell. Cells can be divided into two types, normal cells(marked by green) and special cells(marked by red). Red cells are transferred from green cells by the trigger of light. The type of cells is denoted by ‘C’ as follows:




Division Inhibition