
Contents

GenomeBrowser	2
iobrick	3
iboswitch	4
iRNA	5
/letaNetwork	5
imulator	6
j-Circle	13

GenomeBrowser

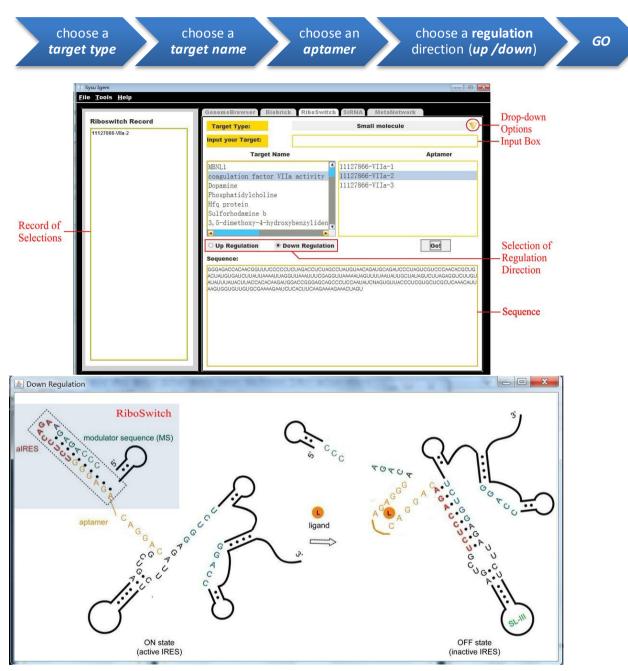
Procedure:

In the main display window, the first ribbon is the sequence that the user has inputted, and the third ribbon shows the corresponding gene annotation. You can click any annotation that you want, and then the sequence site will automatically jump to the fragment related to it. Between those ribbons is an adjustable slider, which can adjust your view location by sliding to the left or to the right. Above the sequence are the head and tail of the location that you are viewing while the head and tail of the whole sequence are displayed in the bottom textbox. What's more, the textbox contains the length, product, tag of the sequence, and links of related papers are also included sometimes.

On the left, there are two useful tools: you can search the fragment that you want by position, product or name (Position represents the position of its head, Product and Name stand for products and names of related genes, both of them support fuzzy search), besides, whether you choose product or name, a dialog box that contains names of related genes will appear; the slider of Zoom is designed for regulating the display frame rate of the sequence.

Biobrick

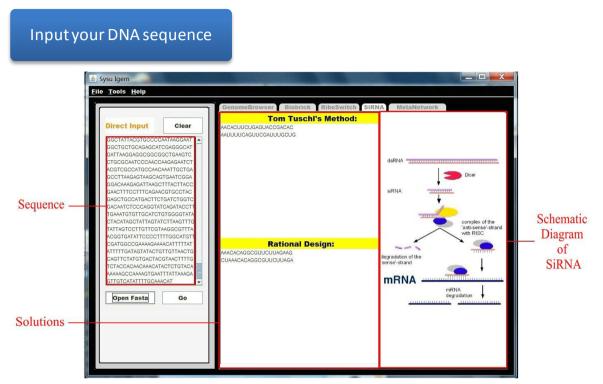
Procedure:


Sysu Igem	GenomeBrowser Biob	rick RiboSwitch SiRNA MetaNetwork
= biobrick - □ BBa_BOO34.xml ~ ≝ Composite parts r → DNA	BBa	K143001 5⊡ Integration Sequence for the amyE locus of B. subtilis
	part_id part_name part_short_name part_short_desc part_type part_status part_results part_results part_nickname part_nickname part_author best_quality twins	11696 BBa_K143001 K143001 5□ Integration Sequence for the amyE locus of B. subtil DNA Available Works amyE 5 IS 1 2008-08-27 Chris Hirst Confirmed

Open your biobrick file (in xml format)

In the main display window, you can view the information of existing biobricks, which are all localized and enable you to get rid of loading when you are studying a biobrick. On the left is the list of the files that you have opened.

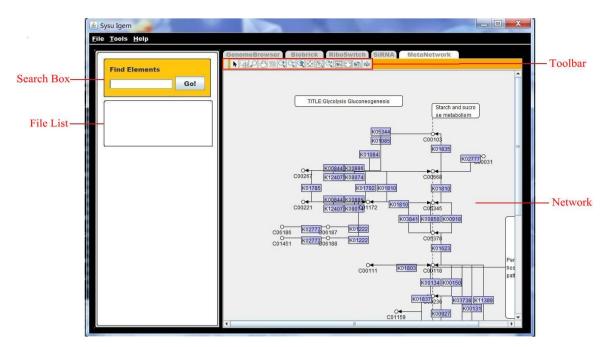
Riboswitch


Procedure:

On the right is the main operating area and you can choose your target type (your experimental object) and corresponding target name, aptamer and regulation direction. Attention should be paid to the input box named Input your Target. You can search your target name by key words or even several letters of it. It should be useful to you. Click **GO** and you will see a picture. The designed riboswitch is in the dotted box on the top left corner. Below it is a diagram to show how the riboswitch works. Besides, there is a list on the left box. It records your choices that you have made in created riboswich project, and you need only click **GO** next time.

Sirna

Procedure:

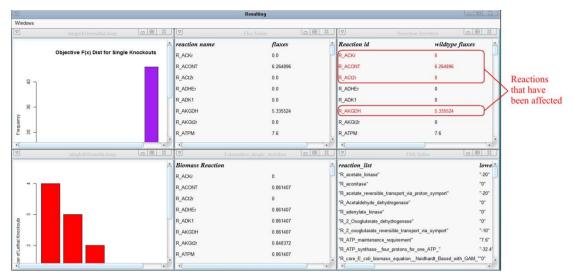


The left textbox is for you to input DNA sequence. There are two ways to input that: you can either input the sequence directly or open a file in FASTA format. If you choose the former, click **Direct Input**, then input your sequence, and click **Go**. If you choose the latter, you need only click **Open Fasta** and choose your FASTA file to open. Two solutions are provided on the right——one is solved by Tom Tuschl's method and the other is by rational design.

MetaNetwork

Procedure:

open a file (in xml format)



In the main display window, you will see a network from KEGG website. On the left box displays a list of the files you have opened. Pay attention that you can right click the main display window to open another KEGG xml file or to search any element in the network (choose **find element**).

Simulator

Procedure:

Tools	n a file I format)	select your options	Go
JGEM FBA Solve			
Select Your File		OpenFile	
Exhaustive single deletion			
Reaction deletion	Select:null		
Fva Solve			
Preturbation Analysis	Select:null		
PhPP ANALYSIS			
Edit Reactions			
Go!			

There are 5 options for you to select: exhaustive single deletion, reaction deletion, Fva analysis, Perturbation analysis and PhPP analysis. They with FBA solve will be introduced in detail. You can select all of them or part of them, or even nothing, then click **Go**. If you select none of them, you will see a table showed basic information of each reaction. If you select several of them, the corresponding windows will tiled in the resulting window. If you select reaction deletion option, a selection of the reaction you want to wipe off is required, and if there is any change, it will be highlighted in red font.

1.FBA sc	lve
----------	-----

	-
reaction name	fluxes
R_ACKr	0
R_ACONT	6.264896
R_ACt2r	0
R_ADHEr	0
R_ADK1	0
R_AKGDH	5.335524
R_AKGt2r	0
R_ATPM	7.6
R_ATPS4r	39.747017
R_Biomass_Ecoli_core_Nw_GAM_	0.861407
R_CO2t	-23.342377
R_CS	6.264896
R_CYTBD	44.693007
R_D_LACt2	0
R_ENO	14.84908
R_ETOHt2r	0
R_EX_ac_e_	0

Left column displays names of the reactions while the right one displays the flux amount of each reaction

2. exanstive single deletion

Calculate the flux amount of the objective reaction when each other reaction is deleted one by one.

Biomass Reaction	
R_ACKr	0
R_ACONT	0.861407
R_ACt2r	0
R_ADHEr	0.861407
R_ADK1	0.861407
R_AKGDH	0.861407
R_AKGt2r	0.840372
R_ATPM	0.861407
R_ATPS4r	0.905523
R_Biomass_Ecoli_core_Nw_GAM_	0.404474
R_C02t	0
R_CS	0.469464
R_CYTBD	0
R_D_LACI2	0.240825
R_ENO	0.861407
R ETOHt2r	0

Left column display names of the reactions

The right one displays the flux amount of objective reaction the user has chosen, when each other reaction is deleted one by one.

Lethal Deletions

R_ACONT

R_Biomass_Ecoli_core_N__w_GAM_

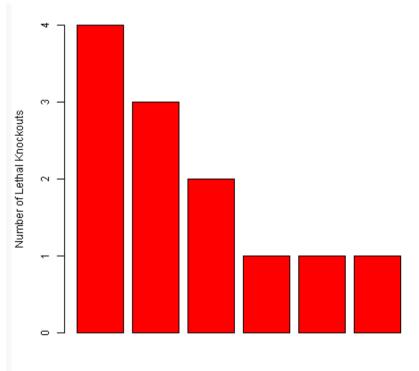
R_CS

R_ENO

R_EX_h_e_

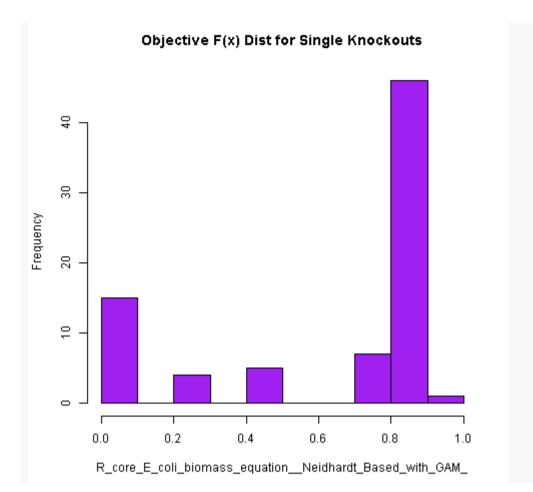
R_EX_pi_e_

R_GAPD


R_ICDHyr

Sub Optimal Dels
R_AKGDH
R_ATPS4r
R_CO2t
R_CYTBD
R_EX_co2_e_
R_EX_h2o_e_
R_EX_o2_e_
R_FBA
R_FUM
R_G6PDH2r
R_GND
R_H2Ot

Super Optimal Dels


R_ATPM

when rolling down the screen, you can see the reaction-names related to lethal deletions, sub optimal deletions and super optimal deletions.

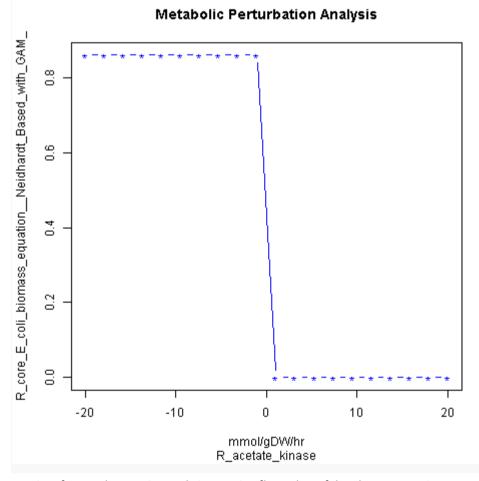
Reaction Subsystem

This graph shows how many lethal knockouts in each reaction subsystem. The information of the reaction subsystem can be attained in SBML

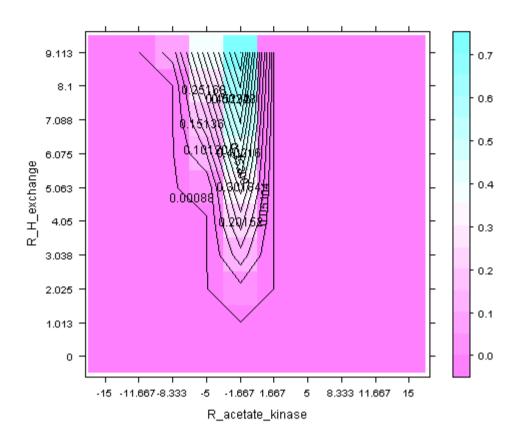
This hist graph shows the frequency of reaction which has different quantified effect showed in the X-axis opon objective reaction.

Reaction id	wildtype fluxes	mutant fluxes
R_ACKr	0	0
R_ACONT	6.264896	6.216358
R_ACt2r	0	0
R_ADHEr	0	0
R_ADK1	0	0
R_AKGDH	5.335524	0
R_AKGt2r	0	0
R_ATPM	7.6	7.6
R_ATPS4r	39.747017	41.654587
R_Biomass_Ecoli_core_Nw_GAM_	0.861407	0.840372
R_C02t	-23.342377	-24.237565
R_CS	6.264896	6.216358
R_CYTBD	44.693007	46.532022
R_D_LACt2	0	0
R_ENO	14.84908	14.590913
R_ETOHt2r	0	0
R_EX_ac_e_	0	0

3. reaction deletion

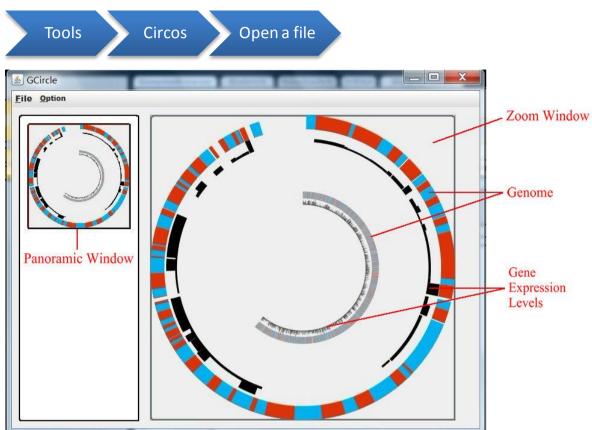

Middle column displays the flux amount of the wild type while the right column displays the mutant type, which is calculated based on the deletion of one chosen reaction.

4. FVA analysis


reaction_list	lower flux limit	wild-type flux	upper flux limit	flux span
"R_acetate_kinase"	"-20"	"0"	"0"	"20"
"R_aconitase"	"0"	"6.2648963"	"20"	"20"
"R_acetate_reversible_transport_via_proton_symport"	"-20"	"0"	"0"	"20"
"R_Acetaldehyde_dehydrogenase"	"0"	"0"	"20"	"20"
"R_adenylate_kinase"	"0"	"0"	"142.4"	"142.4"
"R_2_Oxogluterate_dehydrogenase"	"0"	"5.3355238"	"20"	"20"
"R_2_oxoglutarate_reversible_transport_via_symport"	"-10"	"0"	"0"	"10"
"R_ATP_maintenance_requirement"	"7.6"	"7.6"	"7.6"	"15.2"
"R_ATP_synthasefour_protons_for_one_ATP_"	"-32.4"	"39.7470168"	"120"	"152.4"
"R_core_E_coli_biomass_equationNeidhardt_Based_with_GAM	_""0"	"0.8614074"	"0.8614074"	"0.8614074"

This analysis exams the robustness of the whole metabolic network by calculating flux value which can be reached in reality. In other words, this function works out the upper and lower limit of the flux of each reaction, as you can see in the column name 'lower flux limit ' and 'upper flux limit'.

5. Perturbation analysis:


X-axis refers to the continuously increasing flux value of the chosen reaction. Y-axis refers to the flux value of the objective reaction according to the variation of the flux value of chosen reaction in the X-axis

The value marked on the contour represents the flux value of the objective reaction based on the variation of two chosen reactions The color of the graph changes according to the altitude, namely, the objective flux value.

G-Circle

Procedure:

You can open several file so that you can compare the difference of these genomes. Each genome have 2 circles in this picture: the outer one is the genes of the genome, the inner is the expression level of corresponding genes under two different conditions. By the way, right click different sites in the small panoramic window or left click and drag the picture in the zoom window, you can move to anywhere you want to enlarge and see more details in the zoom window.