

InteGreator: How to improve biological pathways?

ULB Brussels team

Who we are:

Wet lab crew

Institute for Molecular Biology and Medicine (IBMM)

Modeling crew

ULB main campus - Brussels

What is inteGreator?

Using the integron system to optimize pathways

Introduction: the integron

Mazel D. 2006

- Dynamic genetic platform
- Contains gene cassettes that can be excised, integrated and their order rearranged

- Intl: integrase
- attC: excision sites
- attl: primary recombination site
- Pc promoter

Cambray et al. 2010

Goal

Use the integron as a natural genetic
 optimization tool to produce proteins in bacteria

Proof of concept: microcins

- Natural antibacterial peptides produced by Enterobacteria
- Low molecular weight
- Extensive post-translational modifications
- Target essential physiological processes

Results

Construction of the biobricks

■ Biobricks → integron

Typical structure

RFC10 sequences: insertion of microcin gene into biobricks and in the "integron" plasmid.

RBS: ribosome binding site

attC site: gene rearrangement in the integron

Results

7 biobricks

Construction of the Microcin integron

Transfer the integron in pSWlib

Microcin integron intermediate

Bikard et al., 2010

How InteGreator could optimize microcin production

 First approach: put into competition bacteria with all possible gene orders.

$$\begin{cases} \dot{N}_{Bi} = k \frac{D_{Bi}/N_{Bi}}{1 + D_{Bi}/N_{Bi}} N_{Bi} \\ \dot{N}_{Ci} = kN_{Ci} - \alpha A_{Ci} \\ \dot{A}_{Ci} = \alpha^B N_{Ci} \frac{\gamma_{Ci}^B M_{Ci}^B/N_{Ci}}{1 + \gamma_{Ci}^B M_{Ci}^B/N_{Ci}} - \delta A_{Ci} \\ \dot{D}_{Bi} = \alpha^C N_{Bi} \frac{1}{1 + \gamma_{Bi}^C M_{Bi}^C/N_{Bi}} - \delta' D_{Bi} \\ \dot{M}_{Xi}^Y = \rho^Y N_{Xi} \frac{M^Y}{N} - (\delta^Y + \pi_{Xi}^Y) M_{Xi}^Y \qquad (X \neq Y) \\ \dot{M}^X = \sum_i \pi_{Yi}^X M_{Yi}^X - \rho^X M^X + \sum_i \tau_{Xi} N_{Xi} \qquad (X \neq Y) \end{cases}$$

- Problem: no natural selection based on production rate can occur in this system!
- Only immunity-based selection can occur...

- Second approach: put together
 - producing bacteria with common gene order
 - non-producing, slightly immune bacteria.

$$\begin{cases} \dot{N}_{Bi} = kN_{Bi} \\ \dot{N}_n = kN_n - \alpha A_n \\ \dot{A}_n = \alpha^B \frac{\gamma_n M_n^B/N_n}{1 + \gamma_n M_n^B/N_n} N_n - \delta A_n \\ \dot{M}_n^B = \rho^B N_n \frac{M^B}{N} - \pi^B M_n^B \\ \dot{M}^B = \pi^B M_n^B - \rho^B N_n \frac{M^B}{N} + \tau_{Bi} N_{Bi} \end{cases}$$

- Non-producing bacteria will disappear.
- BUT: shift in the total population growth allows to deduce production rate!

 Comparing such experiments with different groups of bacteria allows to find the most productive ones.

Biosafety

- Non pathogenic E. coli strains
- Integron plasmid can only replicate in specific E. colist
 strain
- All biobricks and plasmids were designed in the final goal to be used in bioreactor

Perspectives - Conclusion

Could we do better than evolution?

Yes! It has been done before...

Bikard et al., 2010

 The modeling team has found an experimental setup to select better microcin producing bacteria.

Perspectives - Conclusions

Improvement of production in bio-industry

 The integron could be used to optimize production of antibiotics, drugs, glue (ULB Brussels team 2009: Glucoli),

Acknowledgements

Our team leaders:

Laurence Van Melderen, Gilles Vanwalleghem and Dimitri Gilis

