EVERYTHING IN NATURE IS ABOUT CONTEXT
Motivation
Sustainability
MOTIVATION CYCLES
LUXILLA BIOLAMP
BACKGROUND
Space Invader
made by 2010
Cambridge iGEM team
Synechocystis PCC 6803

LUXILLA BIOLAMP
EXPERIMENTAL DESIGN
LuxBrick

Substrate production enzymes

Luciferase

Substrate production enzymes
Substrate recovery

LuxBrick

Substrate production

byproducts

Substrate consumption

substrate

Light
Strategy

- **Circadian promoter 1**: Recovery enzymes
- **Circadian promoter 2**: Luciferase

Graph showing substrate levels over time:
- Day
- Dusk
- Night
Programmable Expression

Microarray data

- Expression profiles: Sinusoidal fix

 \[k \cdot \sin \left(\frac{\pi \cdot (x - \theta)}{12} \right) + y \]

- Concentration profiles

Desired peaking time

- 08:00
- Protein: Half-life

TEAM UC CHILE
PROGRAMMABLE EXPRESSION

\[\frac{\partial S}{\partial t} = K_1 K_3 S^* \text{[recovery enzymes]} - K_2 K_4 S \text{[luciferase]} \]

K_1; K_3 = promoter strength

K_2; K_4 = catalytic activity
pSB1C3_IntS (Susceptibility construct)

CONSTRUCTS DESIGN

pSB1C3_IntK
(neutral construct)

Synechocystis genome

CONSTRUCTS DESIGN

PSB1C3_IntK

![Diagram of PSB1C3_IntK](image)

PSB1C3_IntS

![Diagram of PSB1C3_IntS](image)
EXPERIMENTAL SECTION 1
CHARACTERIZATION LUXBRICK
Light output maximization

Critical parameters: Glucose and temperature
CHARACTERIZATION LUXBRICK: RESULTS

GLUCOSE EFFECT

Temperature effect: Relative luminescence units vs. mM glucose concentration.

TEMPERATURE EFFECT

Relative luminescence units for different temperatures:
- 28°C
- 30°C
- 37°C
- Uninduced (30°C)
EXPERIMENTAL SECTION 2

ASSEMBLY AND TRANSFORMATION
pSB1C3_IntK (luciferase generator)

pSB1C3_IntS (substrate generator)

Verified by:
- ✔ Amplification
- ✔ Digestion
- ✔ Sequencing
Presence of transformant colonies after 2 weeks from transformation with pSB1C3_IntK (Pta_LuxAB) construct.
No significative difference in bioluminescence readings between either LuxAB transformants and wild-type Synechocystis.
Bioluminescence Assay N°2

Synechocystis PCC6803

- **Pta::LuxAB replicate1**
- **Pta::LuxAB replicate2**
- **wt**

- **BG11 medium**
- **Decanal 3% v/v**
EXPERIMENTAL HIGHLIGHTS

- Characterization of Luxbrick
- Standardized protocols and methodologies for *Synechocystis*
- Modelling strategy
- Two new plasmid backbones
- Bioluminescence in cyanobacteria

What is next:
- Oscillatory behaviour
- Substrate unit
Biolamp: Inspired by Nature

Euprymna scolopes

- Reflectins layer
- Bacterial cavity
- Protective dermis
- Amplifying lens
HUMAN PRACTICES

CONSTITUTIVE EXPRESSION OF SYNTHETIC BIOLOGY IN CHILE

Early phase

Exponential growth

Maturity phase
HUMAN PRACTICES

SYNTHEtic SOCIOLOGY

- Early phase
- Exponential growth

CONEIB congress

- Exponential growth
- Maturity phase

Photo by Fernán Federici

TEAM UC CHILE
SYNBIO WORKSHOP

17 – 21 December 2012 in Santiago, Chile.

Free admission!

Drew Endy
Stanford University

Jim Haseloff
Cambridge University

Ron Weiss
MIT

David Benjamin
Columbia University

Fernán Federici
Cambridge University

Tim Rudge
Cambridge University

PJ Steiner
Cambridge University

Paul Grant
Cambridge University
ACKNOWLEDGEMENTS

Dr. Rodrigo Gutiérrez
Plant Systems Biology Lab
P. Universidad Católica de Chile

Contributors

Sebastián Espinoza
Emilia Díaz
Ulises Mayol
Bryon Silva
Claudia Stuckrath
Rolando Moraga
Fernán Federici
Mónica Vásquez
Alejandro Montenegro

Robert Munita
Felipe Muñoz
Dinka Mandakovic
Juan Venegas
Francisco Melo
Eduardo Agosín
Loreto Valenzuela
Ignacio Vargas
Daniela Restovic

David Olarte
Juan Correa
Juan Larraín
Juan Carlos de la Llera
Juan Ignacio Domingez
Roberto González
Clara Espínola
Karem Tamayo

TEAM UC CHILE