To exploit the fermentative capabilities of *Escherichia coli* to produce hydrogen gas, we performed P1 transduction on strain FMJ39 from JW1228-1 to produce the desired triple mutant with the necessary metabolic flux to hydrogen production. In the fermentation process *E. coli* converts glucose into various intermediate states to generate energy. The transduction of the adhE knockout found in JW1228-2 to FMJ39 will produce a triple mutant with the following genes deleted: ldhA, pflB, and adhE. From these deletions insertions of mhpF, pyruvate decarboxylase, and ferredoxin oxidoreductase will result in a more direct metabolic line towards hydrogen production.

Future Projects

- Test the fusion protein with acetaldehyde dehydrogenase and ferredoxin oxidoreductase in the FMJ39 *E. coli* strain.
- Test each of the two separate genes for activity.
- Test other fermentative pathways for comparative analysis.
- Design a photo-fermentation pathway and pair with the dark-fermentation pathway designed here. Photo-fermentation is capable of breaking down small organic acids to potentially produce more hydrogen.
- Design a pathway for efficient breakdown of cellulose to glucose. Inclusion of this step will yield a complete system capable of producing hydrogen from raw cellulose.

Acknowledgements

The authors would like to thank the School of Natural Sciences and the School of Engineering from the University of California, Merced and the ASUCM for funding this project and Dr. Giovanni of University of Oregon and UC Davis for the support.

References